Riverscrosby2072
One of the challenges of exploiting extracellular vesicles (EVs) as a disease biomarker is to differentiate EVs released by similar cell types or phenotypes. This paper reports a high-throughput and label-free EV microarray technology to differentiate EVs by simultaneous characterization of a panel of EV membrane proteins. The EsupplV microarray platform, which consists of an array of antibodies printed on a photonic crystal biosensor and a microscopic hyperspectral imaging technique, can rapidly assess the binding of the EV membrane proteins with their corresponding antibodies. The EV microarray assay requires only a 2 μL sample volume and a detection time of less than 2 h. The EV microarray assay was validated by not only quantifying seven membrane proteins carried by macrophage-derived EVs but also distinguishing the EVs secreted by three macrophage phenotypes. In particular, the EV microarray technology can generate a molecular fingerprint of target EVs that can be used to identify the EVs' parental cells, and thus has utility for basic science research as well as for point-of-care disease diagnostics and therapeutics.The biological template and its mutants have vital significance in next generation remediation, electrochemical, photovoltaic, catalytic, sensing and digital memory devices. However, a microscopic model describing the biotemplating process is generally lacking on account of modelling complexity, which has prevented widespread commercial use of biotemplates. Here, we demonstrate M13-biotemplating kinetics in atomic resolution by leveraging large-scale molecular dynamics (MD) simulations. The model reveals the assembly of gold nanoparticles on two experimentally-based M13 phage types using full M13-capsid structural models and with polarizable gold nanoparticles in explicit solvent. Both mechanistic and structural insights into the selective binding affinity of the M13 phage to gold nanoparticles are obtained based on a previously unconsidered clamp-based binding-pocket-favored N-terminal-domain assembly and also on surface-peptide flexibility. These results provide a deeper level of understanding of protein sequence-based affinity and open the route for genetically engineering a wide range of 3D electrodes for high-density low-cost device integration.Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. NGI-1 cell line AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.β-Conglycinin is one of the key thermostable anti-nutritional factors in soybean, which has strong immunogenicity that usually leads to weaning in some young animals such as piglets and calves and allergic reaction in rats. Neutrophils are involved in the pathogenesis of an allergy. However, the contribution of functional neutrophils to allergy needs to be clarified. The formation of neutrophil extracellular traps is a novel effector mechanism of neutrophils and has been extensively investigated in recent years. To the best of our knowledge, there is no information available on β-conglycinin-induced NETs. In this study, β-conglycinin-induced NET formation in mice was examined via immunofluorescence analysis and fluorescence microplate reader. The mechanism of β-conglycinin-induced NETs was investigated using inhibitors and fluorescent microplate methods. The results showed that β-conglycinin induced the classical characteristics of NETs, which mainly consist of DNA as the backbone and decorated with histones,ical applications.Designing the homogeneous assembly of the bio-nano interface to fine-tune the interactions between the nanoprobes and biological systems is of prime importance to improve the antimicrobial efficiency of nanomedicines. In this work, highly luminescent silver nanoclusters with the homogeneous conjugation of an antimicrobial peptide (referred to as Dpep-Ag NCs) were achieved via the reduction-decomposition-reduction process as a single package. The as-designed Dpep-Ag NCs inherited the two distinctive features of bactericides from the Ag+ species and the antimicrobial peptide of Dpep, and exhibited enhanced bacterial killing efficiency compared with other control groups including BSA-capped Ag NCs and the original antimicrobial peptide bactenecin (Opep)-protected Ag nanoparticles (Opep-Ag NPs). The ultrasmall size feature of Dpep-Ag NCs combined with the positively charged bactericidal tail allow a better interface and interaction with the cell membrane owing to the selective targeting of lipopolysaccharides in the Gram-negative bacteria and electrostatic interaction, facilitating the membrane permeability. Dpep-Ag NCs restrained the E. coli growth visibly and outperformed commercial Ag NPs (30 nm) with reduced (ca. 100-fold) minimal inhibitory concentration. The analysis of infected wound sizes and tissues treated with Dpep-Ag NCs in a murine model reveal obvious differences in the healing effect compared with the other counterparts, demonstrating its antibacterial efficiency in practical application.The endoplasmic reticulum (ER) apparatus is a part of the secretory pathway that transports proteins to the plasma membrane through vesicle trafficking, enabling post-translational modification of the newly synthesized proteins. Several diseases such as inflammation, neurodegenerative disorder, and bipolar disorder are closely associated with dysfunction of the ER stress response. Herein, we present an ER-targeting, intracellular delivery approach that utilized cell-penetrating peptide (CPP)-conjugated lipid/polymer hybrid nanovehicles (LPNVs). For this, we patched Penetratin, a type of CPP, onto the LPNVs with vesicular membranes formulated with poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(ethylene oxide) (PEO-b-PCL-b-PEO) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). We found that the Penetratin-conjugated LPNV (LPNVPnt) was readily taken up by cells and showed specific ER-targeting ability, which was comparable to that of LPNVs conjugated with other types of CPPs. Moreover, we observed that remarkable lysosomal escape of the LPNVs occurred due to effective pH buffering with the aid of PEO-b-PCL-b-PEO.