Bowmanray9806

Z Iurium Wiki

Verze z 15. 11. 2024, 21:31, kterou vytvořil Bowmanray9806 (diskuse | příspěvky) (Založena nová stránka s textem „The monitoring of worldwide ship traffic is a field of high topicality. Activities like piracy, ocean dumping, and refugee transportation are in the news e…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The monitoring of worldwide ship traffic is a field of high topicality. Activities like piracy, ocean dumping, and refugee transportation are in the news every day. The detection of ships in remotely sensed data from airplanes, drones, or spacecraft contributes to maritime situational awareness. However, the crucial factor is the up-to-dateness of the extracted information. With ground-based processing, the time between image acquisition and delivery of the extracted product data is in the range of several hours, mainly due to the time consumed by storing and transmission of the large image data. By processing and analyzing them on-board and transmitting the product data directly as ship position, heading, and velocity, the delay can be shortened to some minutes. Real-time connections via satellite telecommunication services allow small packets of information to be sent directly to the user without significant delay. The AMARO (Autonomous Real-Time Detection of Moving Maritime Objects) project at DLR is a feasibility study of an on-board ship detection system involving on-board processing and real-time communication. The operation of a prototype system was successfully demonstrated on an airborne platform in spring 2018. The on-ground user could be informed about detected vessels within minutes after sighting without a direct communication link. In this article, the scope, aim, and design of the AMARO system are described, and the results of the flight experiment are presented in detail.Oscillating water column (OWC) plants face power generation limitations due to the stalling phenomenon. This behavior can be avoided by an airflow control strategy that can anticipate the incoming peak waves and reduce its airflow velocity within the turbine duct. In this sense, this work aims to use the power of artificial neural networks (ANN) to recognize the different incoming waves in order to distinguish the strong waves that provoke the stalling behavior and generate a suitable airflow speed reference for the airflow control scheme. The ANN is, therefore, trained using real surface elevation measurements of the waves. The ANN-based airflow control will control an air valve in the capture chamber to adjust the airflow speed as required. A comparative study has been carried out to compare the ANN-based airflow control to the uncontrolled OWC system in different sea conditions. Also, another study has been carried out using real measured wave input data and generated power of the NEREIDA wave power plant. Results show the effectiveness of the proposed ANN airflow control against the uncontrolled case ensuring power generation improvement.Glioblastoma is an aggressive brain tumor with a propensity for intracranial recurrence. We hypothesized that tumors can be visualized with diffusion tensor imaging (DTI) before they are detected on anatomical magnetic resonance (MR) images. We retrospectively analyzed serial MR images from 30 patients, including the DTI and T1-weighted images at recurrence, at 2 months and 4 months before recurrence, and at 1 month after radiation therapy. The diffusion maps and T1 images were deformably registered longitudinally. learn more The recurrent tumor was manually segmented on the T1-weighted image and then applied to the diffusion maps at each time point to collect mean FA, diffusivities, and neurite density index (NDI) values, respectively. Group analysis of variance showed significant changes in FA (p = 0.01) and NDI (p = 0.0015) over time. Pairwise t tests also revealed that FA and NDI at 2 months before recurrence were 11.2% and 6.4% lower than those at 1 month after radiation therapy (p less then 0.05), respectively. Changes in FA and NDI were observed 2 months before recurrence, suggesting that progressive microstructural changes and neurite density loss may be detectable before tumor detection in anatomical MR images. FA and NDI may serve as non-contrast MR-based biomarkers for detecting subclinical tumors.Cyber-physical systems (CPS) are composed of software and hardware components. Many such systems (e.g., IoT based systems) are created by composing existing systems together. Some of these systems are of critical nature, e.g., emergency or disaster management systems. In general, component-based development (CBD) is a useful approach for constructing systems by composing pre-built and tested components. However, for critical systems, a development method must provide ways to verify the partial system at different stages of the construction process. In this paper, for system architectures, we propose two styles rigid architecture and flexible architecture. A system architecture composed of independent components by coordinating exogenous connectors is in flexible architecture style category. For CBD of critical systems, we select EX-MAN from flexible architecture style category. Moreover, we define incremental composition mechanism for this model to construct critical systems from a set of system requirements. Incremental composition is defined to offer preservation of system behaviour and correctness of partial architecture at each incremental step. To evaluate our proposed approach, a case study of weather monitoring system (part of a disaster management) system was built using our EX-MAN tool.A series of branched tetrapeptide Schiff bases 3-6 were designed and synthesized from corresponding tetrapeptide hydrazide 2 as a starting material.In vitroevaluation of the synthesized compounds 4-6 against breast MCF-7 carcinoma cells identified their excellent anticancer potency, with IC50 ranging from 8.12 ± 0.14 to 17.55 ± 0.27 μM in comparison with the references, cisplatin and milaplatin (IC50= 13.34 ± 0.11and 18.43 ± 0.13 μM, respectively). Furthermore, all derivatives demonstrated promising activity upon evaluation of theirin vitroandin vivosuppression of p53 ubiquitination and inhibition assessment for LDHA kinase. Finally, molecular docking studies were performed to predict the possible binding features of the potent derivatives within the ATP pocket of LDHA in an attempt to get a lead for developing a more potent LDHA inhibitor with anti-proliferative potency.

Autoři článku: Bowmanray9806 (Gates Proctor)