Kincaidwhittaker6942

Z Iurium Wiki

Verze z 15. 11. 2024, 18:40, kterou vytvořil Kincaidwhittaker6942 (diskuse | příspěvky) (Založena nová stránka s textem „Overall, the data presented herein provide new insights that may facilitate the rational design of more efficacious 2-PAM analogs.The sirtuin enzymes are p…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Overall, the data presented herein provide new insights that may facilitate the rational design of more efficacious 2-PAM analogs.The sirtuin enzymes are potential drug targets for intervention in a series of diseases. Efforts to inhibit enzymes of this class with thioamide- and thiourea-containing, substrate-mimicking entities have produced a number of high-affinity binders. However, less attention has been dedicated to the investigation of the stability of these inhibitors under various conditions. Here, we provide evidence of an unprecedented degree of cleavage of short-chain ε-N-thioacyllysine modifications meant to target these sirtuins and further provide insights into the serum stability of compounds containing both thioamides and thioureas. Our study questions the utility short-chain thioamide-based inhibitors of sirtuins for drug development and points to monoalkylated thiourea-based chemotypes as being more stable in human serum.We report the design, synthesis, and evaluation of a series of harmaline analogs as selective inhibitors of 2-arachidonylglycerol (2-AG) oxygenation over arachidonic acid (AA) oxygenation by purified cyclooxygenase-2 (COX-2). A fused tricyclic harmaline analog containing a CH3O substituent at C-6 and a CH3 group at the C-1 position of 4,9-dihydro-3H-pyrido[3,4-b]indole (compound 3) was the best substrate-selective COX-2 inhibitor of those evaluated, exhibiting a 2AG-selective COX-2 inhibitory IC50 of 0.022 μM as compared to >1 μM for AA. R-roscovitine The 2.66 Å resolution crystal complex of COX-2 with compound 3 revealed that this series of tricyclic indoles binds in the cyclooxygenase channel by flipping the side chain of L531 toward the dimer interface. This novel tricyclic indole series provides the foundation for the development of promising substrate-selective molecules capable of increasing endocannabinoid (EC) levels in the brain to offer new treatments for a variety of diseases, from pain and inflammation to stress and anxiety disorders.Clinical imaging approaches to detect inflammatory biomarkers, such as cyclooxygenase-2 (COX-2), may facilitate the diagnosis and therapy of inflammatory diseases. To this end, we report the discovery of N-[(rhodamin-X-yl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide chloride salt (fluorocoxib D), a hydrophilic analog of fluorocoxib A. Fluorocoxib D inhibits COX-2 selectively in purified enzyme preparations and cells. It exhibits adequate photophysical properties to enable detection of COX-2 in intact cells, in a mouse model of carrageenan-induced acute footpad inflammation and inflammation in a mouse model of osteoarthritis. COX-2-selectivity was verified either by blocking the enzyme's active site with celecoxib or by molecular imaging with nontargeted 5-carboxy-X-rhodamine dye. These data indicate that fluorocoxib D is an ideal candidate for early detection of inflammatory or neoplastic lesions expressing elevated levels of COX-2.Zika virus (ZIKV) infection, which initially was endemic only in Africa and Asia, is rapidly spreading throughout Europe, Oceania, and the Americas. Although there have been enormous efforts, there is still no approved drug to treat ZIKV infection. Herein, we report the synthesis and biological evaluation of agents with noncompetitive mechanism of the ZIKV NS2B/NS3 protease inhibition through the binding to an allosteric site. Compounds 1 and 2 showed potent activity in both enzymatic and cellular assays. Derivative 1 efficiently reduced the ZIKV protein synthesis and the RNA replication and prevented the mice from life-threatening infection and the brain damage caused by ZIKV infection in a ZIKV mouse model.The identification and lead optimization of a series of pyrazolo[3,4-d]pyridazinone derivatives are described as a novel class of potent irreversible BTK inhibitors, resulting in the discovery of compound 8. Compound 8 exhibited high potency against BTK kinase and acceptable PK profile. Furthermore, compound 8 demonstrated significant in vivo efficacy in a mouse-collagen-induced arthritis (CIA) model.Focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase, exerts kinase-dependent enzymatic functions and kinase-independent scaffolding functions, both of which are crucial in cancer development, early embryonic development, and reproduction. However, previous efforts for FAK blocking mainly focus on kinase inhibitors. Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules that allow direct post-translational knockdown of proteins via ubiquitination of a target protein by E3 ubiquitin ligase and subsequent proteasomal degradation. Here, we designed and synthesized a FAK PROTAC library with FAK inhibitor (PF562271 or VS6063) and CRBN E3 ligand. A novel FAK-targeting PROTAC, FC-11, showed a rapid and reversible FAK degradation with a picomolar of DC50 in various cell lines in vitro, which imply that FAK-PROTACs could be useful as expand tools for studying functions of FAK in biological system and as potential therapeutic agents.Herein we report the synthesis, SAR, and biological evaluation of a series of 1H-pyrrolo[2,3-b]pyridine-2-carboxamide derivatives as selective and potent PDE4B inhibitors. Compound 11h is a PDE4B preferring inhibitor and exhibited acceptable in vitro ADME and significantly inhibited TNF-α release from macrophages exposed to pro-inflammatory stimuli (i.e., lipopolysaccharide and the synthetic bacterial lipopeptide Pam3Cys). In addition, 11h was selective against a panel of CNS receptors and represents an excellent lead for further optimization and preclinical testing in the setting of CNS diseases.Human Macrophage Migration Inhibitory Factor (MIF) is a trimeric cytokine implicated in a number of inflammatory and autoimmune diseases and cancer. We previously reported that the dye p425 (Chicago Sky Blue), which bound MIF at the interface of two MIF trimers covering the tautomerase and allosteric pockets, revealed a unique strategy to block MIF's pro-inflammatory activities. Structural liabilities, including the large size, precluded p425 as a medicinal chemistry lead for drug development. We report here a rational design strategy linking only the fragment of p425 that binds over the tautomerase pocket to the core of ibudilast, a known MIF allosteric site-specific inhibitor. The chimeric compound, termed L2-4048, was shown by X-ray crystallography to bind at the allosteric and tautomerase sites as anticipated. L2-4048 retained target binding and blocked MIF's tautomerase CD74 receptor binding, and pro-inflammatory activities. Our studies lay the foundation for the design and synthesis of smaller and more drug-like compounds that retain the MIF inhibitory properties of this chimera.

Autoři článku: Kincaidwhittaker6942 (Brantley Chambers)