Ditlevsenwheeler5696

Z Iurium Wiki

Verze z 15. 11. 2024, 17:09, kterou vytvořil Ditlevsenwheeler5696 (diskuse | příspěvky) (Založena nová stránka s textem „ould enhance muscle strength in the hip and choose scientific training methods.Tuna can change the area and shape of the median fins, including the first d…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

ould enhance muscle strength in the hip and choose scientific training methods.Tuna can change the area and shape of the median fins, including the first dorsal, second dorsal, and anal fins. The morphing median fins have the ability of adjusting the hydrodynamic forces, thereby affecting the yaw mobility of tuna to a certain extent. In this paper, the hydrodynamic analysis of the median fins under different morphing states is carried out by the numerical method, so as to clarify the influence of the erected median fins on the yaw maneuvers. By comparing the two morphing states of erected and depressed, it can be concluded that the erected median fins can increase their own hydrodynamic forces during the yaw movement. However, the second dorsal and anal fins have limited influence on the yaw maneuverability, and they tend to maintain the stability of tuna. The first dorsal fin has more lift increment in the erection state, which can obviously affect the hydrodynamic performance of tuna. Moreover, as the median fins are erected, the hydrodynamic forces of the tuna's body increase synchronously due to the interaction between the body and the median fins, which is also very beneficial to the yaw motion. This study indicates that tuna can use the morphing median fins to adjust its mobility and stability, which provides a new idea for the design of robotic fish.

Magnetic Resonance Imaging has better resolution for soft tissue; at the same time, the robot can work in a stable manner for a long time. MRI image-guided breast interventional robots have attracted much attention due to their minimally invasive nature and accuracy. In this paper, a hydraulic-driven MRI-compatible breast interventional robot is proposed to perform breast interventional procedure.

First is the analysis of the design requirements of the hydraulic-driven MRI-compatible breast interventional robot, and then the design scheme is determined. Second, the three-dimensional model and the link frames are established. The workspace of the robot end point is solved by MATLAB/Simulink software. selleck chemicals llc Then, the 3D printing technology is used to make a physical model of the MRI-compatible breast interventional robot. After assembly and debugging, the physical model is used for workspace verification, and the simulation result of the workspace shows that it is correct. Finally, the experimental research on thdebugged to verify that its working space and positioning error meet the requirements.

The structure of a differential rotary breast interventional robot is determined, with the link frames assigned to the mechanism and the Denavit-Hartenberg parameters given. Workspace simulation of MRI-compatible breast interventional robot is done in MATLAB. The 3D printed MRI-compatible breast interventional robot is assembled and debugged to verify that its working space and positioning error meet the requirements.Research of breakage of the chestnut tree branch on the planting of university campus is provided. Collapse is caused by a severe accidental wind gust. Due to collapse in the student environment, the investigation has additional methodical value for the teaching of FEA simulation. The model includes roots, trunk, branch, and conditional crown, where the trunk-branch junction is steady enough. The load-bearing system of tree is taken as an example of an effective bionic design. The branch has grown with the implementation of the idea of "equal-strength console"-the change of sections along the branch provides constant stress level and near uniform dispensation of their without stress concentrators. Static simulation of the tree loading is provided both in the linear formulation and in the geometrically nonlinear one. It is proved that in the trunk-branch junction area the stresses are twice lower than the branch itself, and it is not the place for fracture. For the given wind pressure, the work stress in the branch has exceeded twice the allowable level under bending with some torsion. In such construction (of the tree), the breakage could happen even in the perfect branch condition due to her severe overloading.Trunk stiffness is an important parameter for trunk stability analysis and needs to be evaluated accurately. Discrepancies regarding the dependence of trunk stiffness on the direction of movement in the sagittal plane suggest inherent sources of error that require explanation. In contrast to the common assumption that the muscle stiffness remains constant prior to the induction of a reflex during position perturbations, it is postulated that muscle-stiffness changes of nonneural origin occur and alter the experimental trunk stiffness, causing it to depend on the sagittal direction. This is confirmed through reinterpretation of existing test data for a healthy subject, numerical simulation, and sensitivity analysis using a biomechanical model. The trunk stiffness is determined through a static approach (in forward and backward directions) and compared with the model stiffness for assumed scenarios involving deactivated muscles. The difference in stiffness between the opposite directions reaches 17.5% without a preload and decreases when a moderate vertical preload is applied. The increased muscle activation induced by preloads or electrical stimuli explains the apparent discrepancies observed in previous studies. The experimental stiffness invariably remains between low and high model-stiffness estimates based on extreme scenarios of the postulated losses of muscle activation, thereby confirming our hypothesis.Metabolic pathway is an important type of biological pathways. It produces essential molecules and energies to maintain the life of living organisms. Each metabolic pathway consists of a chain of chemical reactions, which always need enzymes to participate in. Thus, chemicals and enzymes are two major components for each metabolic pathway. Although several metabolic pathways have been uncovered, the metabolic pathway system is still far from complete. Some hidden chemicals or enzymes are not discovered in a certain metabolic pathway. Besides the traditional experiments to detect hidden chemicals or enzymes, an alternative pipeline is to design efficient computational methods. In this study, we proposed a powerful multilabel classifier, called iMPTCE-Hnetwork, to uniformly assign chemicals and enzymes to metabolic pathway types reported in KEGG. Such classifier adopted the embedding features derived from a heterogeneous network, which defined chemicals and enzymes as nodes and the interactions between chemicals and enzymes as edges, through a powerful network embedding algorithm, Mashup.

Autoři článku: Ditlevsenwheeler5696 (Vest Barber)