Munkholmtan0525
ata forests differed significantly between primary forest and secondary forest under anthropogenic disturbance.Litter is an important contribution to forest soil. Litter decomposition plays an important role in nutrient cycling of forest ecosystem. A field litterbag experiment was conducted to examine the dynamics of decomposition rate, nutrient release and enzyme activity during litter decomposition in the pure forests of Larix principis-rupprechtii (L) and mixed forests, including L and Betula platyphylla (B), L and Quercus mongolica (Q), as well as LBQ, in Saihanba area, Hebei Pro-vince, China. The results showed that the decomposition rate of leaf litter in L forest was significantly lower than that in mixed forests during the 720 d decomposition. The LB had the highest decomposition rate of L leaf litter. All treatments had the same change trend of nutrient contents, with the contents of N and P being increased and that of C, K and C/N being decreased. Contrast to pure leaf litter of L, leaf litter in mixed forests could promote the release of C and K, and inhibit litter N and P release. During the litter decomposition, the activities of catalase, urease and acid phosphatase increased, while that of sucrase decreased in all leaf litter of forests. The decomposition rate of leaf litter was positively correlated with the activities of catalase, urease and acid phosphatase, negatively correlated with that of sucrase. Our results showed that leaf litter mixture of L. principis-rupprechtii, B. platyphylla and Q. mongolica could enhance the litter decomposition of L. principis-rupprechtii, and that enzyme activities were closely related to litter decomposition.In this study, seven sampling sites (glaciers retreated for 0, 10, 30, 40, 50, 80 and 127 years) were chosen along a primary succession sequence in the Hailuogou glacial retreat area in the eastern margin of the Tibetan Plateau, China. The accumulation and cycling characteristics of N and P under different succession stages were analyzed by measuring biomass and N and P contents in surface soil and each vegetation layer. PLX4032 The N and P contents in leaves, branches and roots of tree layers decreased along the succession sequence, whereas the N and P contents in stems were higher in the late succession stage. The changes of N and P contents in litter and soil O layer were consis-tent with those in the leaves and branches of tree layers. Ecosystem N and P storage increased along the succession sequence. Ecosystem N accumulation was mainly dependent on the vegetation layer in the early succession stage. After the community reached the climax, soil became the main N pool of the ecosystem. Vegetation P storage was higher than that in the surface soil after 80 years of glacial retreat. The nutrient accumulation rate in each layer of the ecosystem was rapid in the middle succession stage, with an order of surface soil > tree layer > understory vegetation layer. The nutrient cycling coefficients of N and P in broadleaved forest in the middle stage were higher than those in coniferous forest in the late stage, whereas the N and P utilization efficiency was lower than that in coniferous forest. Therefore, the mechanism of low nutrient cycling and high utilization efficiency of coniferous trees was conducive to the their competition with other species, thus finally forming the climax community.We examined the differences of maximum light use efficiency (LUEmax), most effective light intensity (PARe), light compensation point (LCP) and light saturation point (LSP) in diffe-rent vertical positions and different phenological periods of tree crown in Larix principis-rupprechtii plantation in Saihanba Mechanical Forest Farm of Hebei Province. We analyzed the main influencing factors for all the variables. The results showed that LUEmax increased with the increasing crown depth, and that PARe, LCP and LSP decreased with the increasing crown depth. Such a result indicated that upper crown had higher utilization efficiency to strong light and that the lower crown was more efficient to adapt to weak light environment. During the leaf development in the growth period, the LUEmax approximately increased except in July, while the changes of other photosynthe-tic-light factors showed a tendency of unimodal curve. Environmental factors were significantly correlated with the indices of light response, mainly due to the stress reaction of leaf stomata to surrounding environment. Understanding the spatial and seasonal changes of the photosynthetic-light indicators was important for formulating scientific management measures, optimizing stand structure, improving local microenvironment and maximizing forest productivity.Accurately quantifying the impacts of environmental factors and canopy structure on stem sap flow is of great significance for deeply understanding water use strategies of trees in changing environment. The stem sap flow of Larix principis-rupprechtii plantation was observed using thermal diffusion probes from June to September of 2019 in the Xiangshuihe small watershed of Liupan Mountains, with the meteorological conditions, root-zone soil water content and canopy structure being simultaneously recorded. We first analyzed the relationships of sap flow rate (Jc) to potential evapotranspiration (PET), relative extract water (REW) and canopy leaf area index (LAI), and then quantified their relative contribution to Jc. The results showed that the response of Jc to PET, LAI, and REW conformed to binomial, linearly increase and saturated exponential function, respectively. The Jc model coupling multiple factors was established as a continuous multiplication of the response functions of Jc to PET, REW and LAI, which had good simulation precision. PET was the main factor leading to the difference of Jc in different weather conditions. The average contribution rate of PET had obvious difference in sunny (with a contribution rate of 40.3%), cloudy (4.3%), and rainy days (-26.3%). PET and LAI were the leading factors affecting the Jc variation among months. The ranges of the contribution rates of PET and LAI were from -23.1% to 16.8% and from -12.3% to 11.0%, respectively. The Jc model coupling the multi-factor effect developed in this study could be used to predict Jc, and quantify the impacts of each leading factor, which had the potential to be an effective tool to analyze the water use of trees in the changing environment.