Huberjohnston1295

Z Iurium Wiki

Verze z 15. 11. 2024, 16:06, kterou vytvořil Huberjohnston1295 (diskuse | příspěvky) (Založena nová stránka s textem „Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functionin…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.Colocalization analysis has emerged as a powerful tool to uncover the overlapping of causal variants responsible for both molecular and complex disease phenotypes. The findings from colocalization analysis yield insights into the molecular pathways of complex diseases. In this paper, we conduct an in-depth investigation of the promise and limitations of the available colocalization analysis approaches. Tamoxifen datasheet Focusing on variant-level colocalization approaches, we first establish the connections between various existing methods. We proceed to discuss the impacts of various controllable analytical factors and uncontrollable practical factors on outcomes of colocalization analysis through realistic simulations and real data examples. We identify a single analytical factor, the specification of prior enrichment levels, which can lead to severe inflation of false-positive colocalization findings. Meanwhile, the combination of many other analytical and practical factors all lead to diminished power. Consequently, we recommend the following strategies for the best practice of colocalization analysis (1) estimating prior enrichment level from the observed data and (2) separating fine-mapping and colocalization analysis. Our analysis of 4,091 complex traits and the multi-tissue expression quantitative trait loci (eQTL) data from the GTEx (v.8) suggests that colocalizations of molecular QTLs and causal complex trait associations are widespread. However, only a small proportion can be confidently identified from currently available data due to a lack of power. Our findings set a benchmark for current and future integrative genetic association analysis applications.SYNGAP1 is a neuronal Ras and Rap GTPase-activating protein with important roles in regulating excitatory synaptic plasticity. While many SYNGAP1 missense and nonsense mutations have been associated with intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder (ASD), whether and how they contribute to individual disease phenotypes is often unknown. Here, we characterize 57 variants in seven assays that examine multiple aspects of SYNGAP1 function. Specifically, we used multiplex phospho-flow cytometry to measure variant impact on protein stability, pERK, pGSK3β, pp38, pCREB, and high-content imaging to examine subcellular localization. We find variants ranging from complete loss-of-function (LoF) to wild-type (WT)-like in their regulation of pERK and pGSK3β, while all variants retain at least partial ability to dephosphorylate pCREB. Interestingly, our assays reveal that a larger proportion of variants located within the disordered domain of unknown function (DUF) comprising the C-terminal half of SYNGAP1 exhibited higher LoF, compared to variants within the better studied catalytic domain. Moreover, we find protein instability to be a major contributor to dysfunction for only two missense variants, both located within the catalytic domain. Using high-content imaging, we find variants located within the C2 domain known to mediate membrane lipid interactions exhibit significantly larger cytoplasmic speckles than WT SYNGAP1. Moreover, this subcellular phenotype shows both correlation with altered catalytic activity and unique deviation from signaling assay results, highlighting multiple independent molecular mechanisms underlying variant dysfunction. Our multidimensional dataset allows clustering of variants based on functional phenotypes and provides high-confidence, multi-functional measures for making pathogenicity predictions.

Two novel type 2 oral poliovirus vaccine (OPV2) candidates, novel OPV2-c1 and novel OPV2-c2, designed to be more genetically stable than the licensed Sabin monovalent OPV2, have been developed to respond to ongoing polio outbreaks due to circulating vaccine-derived type 2 polioviruses.

We did two randomised studies at two centres in Belgium. The first was a phase 4 historical control study of monovalent OPV2 in Antwerp, done before global withdrawal of OPV2, and the second was a phase 2 study in Antwerp and Ghent with novel OPV2-c1 and novel OPV2-c2. Eligible participants were healthy adults aged 18-50 years with documented history of at least three polio vaccinations, including OPV in the phase 4 study and either OPV or inactivated poliovirus vaccine (IPV) in the novel OPV2 phase 2 study, with no dose within 12 months of study start. In the historical control trial, participants were randomly assigned to either one dose or two doses of monovalent OPV2. In the novel OPV2 trial, participants with previous ts.

University of Antwerp and Bill & Melinda Gates Foundation.

University of Antwerp and Bill & Melinda Gates Foundation.

Autoři článku: Huberjohnston1295 (Connolly Zhu)