Vadperry4279
251.001.53. The HWE-polysaccharide had the largest molecular weight (4.2 × 105 Da), reduced by the order of the UETE-polysaccharide (2.02 × 104 Da), ETE-polysaccharide (1.72 × 104 Da), and UTE-polysaccharide (1.34 × 104 Da). Thus, the four extract methods exerted significant effects on the bioactivity and characteristics of the polysaccharides. The UETE-polysaccharide from G. biloba seeds showed the highest bioactive activities and distinctive structural characteristics.Complex structure of cyanobacterium Nostoc sp. exopolysaccharide (EPS), with apparent molecular weight 214 × 103 g/mol, can be deduced from its composition. Chemical and NMR analyses found four dominant sugar monomers, namely (1 → 4)-linked α-l-arabinopyranose, β-d-glucopyranose, β-d-xylopyranose and (1 → 3)-linked β-d-mannopyranose, two different uronic acids and a lactyl group, with (1 → 4,6)-linked β-d-glucopyranose as the only branch point suggest a complex structure of this polymer. The dominant uronic acid is α-linked, but it remained unidentified. β-d-Glucuronic acid was present in lower amount. Their position as well as that of lactyl remained undetermined too. Different doses of orally administered EPS in guinea pigs evoked a significant decrease in cough effort and a decrease in airway reactivity. The antitussive efficacy and bronchodilator effect of higher doses of EPS were found to be similar to that of the antitussive drug codeine and the antiasthmatic salbutamol. find more Without significant cytotoxicity on the RAW 264.7 cells, EPS stimulated the macrophage cells to produce pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and prostaglandins (PGs) and nitric oxide (NO) via induction of COX-2 and iNOS expression, respectively, suggesting that this biopolymer potentiates an early innate immune response and can therefore be used as a new immune modulator.In this study, magnetic/graphene/chitosan nanocomposite (MGCH) is prepared through facile solvothermal process and employed as an adsorbent for the removal of 2-naphthol from aqueous solution. The physico-chemical characteristic results of FESEM, Raman, FTIR, XRD and VSM confirms that the MGCH nanocomposite is effectively prepared. The FESEM and EDS analysis reveals that the high density of spherical-like Fe3O4 nanoparticles and chitosan are successfully assembled on the surfaces of the graphene sheets. VSM result of MGCH composite exhibited higher saturation magnetization of 46.5 emu g-1 and lower coercivity (Hc) of 50 Oe. This result discloses that MGCH possesses enough response required for the separation from aqueous solution. The batch mode adsorption studies demonstrates that MGCH based adsorbent showed almost 99.8% adsorption of 2-naphthol with a maximum adsorption capacity of 169.49 mg g-1 at pH 2. Moreover, the kinetic studies of the samples are performed by fitting adsorption models to ensure the nature of the adsorption system. This work proves that MGCH nanocomposite can be used as high-performance adsorbent for removing of phenolic pollutants from contaminated wastewater.Agar is a biopolymer extracted from certain red algae. The continuous and transparent film made from agar gum is becoming a common and renewable alternative for plastic-based food packaging materials. However, plain agar film suffers from brittleness, high moisture permeability, and poor thermal stability. Considerable researches have been devoted to improving the properties of agar films to extend their applications. These include reinforcements by nanomaterials, blending with other biopolymers, and incorporating plasticizers, hydrophobic components, or antimicrobial agents into their structure. This article comprehensively reviews the functional properties and defects of edible films made from agar gum. Also, it describes various strategies and components used to make an agar film with desirable properties. Moreover, the applications of agar-based edible films with improved functionality for food packaging are discussed.Volume-regulated anion channel (VRAC) is ubiquitously expressed in vertebrate cells and in various types of cancer cells. Leucine-rich repeat containing 8A (LRRC8A) and its four homologous family members (LRRC8B-E) assemble into heterogeneous VRAC complexes of ~800 kDa. The main components of VRAC, LRRC8A and LRRC8D have been implicated in the proliferation, migration, death, and multidrug resistance of cancer cells through their involvement in various signal pathways. This review summarizes recent findings concerning the involvement of VRAC in cancer development and progression, including the molecular structure, function, and regulation of VRAC and its roles in various cancers, and highlights the remaining challenges in the field. Our aim is to evaluate the potential of VRAC as a therapeutic target for cancer therapies and to discuss the major problems to be solved.Understanding the factors governing stability of proteins is fundamentally and industrially important topic in protein science. Bacterial alpha amylases are industrially important enzymes which are involved in the breakage of α-1, 4-glycosidic bonds in starch. Current study is focussed on elucidating the role of non-covalent interactions in the differential stability of alpha amylases from thermophilic like Bacillus licheniformis (BLA) and mesophilic Bacillus amyloliquefaciens (BAA). The conformational stability of BLA is slightly higher than BAA in GdmCl which are 2.94 and 2.53 kcal/mol respectively. BLA does not unfold even in 8.0 M urea at pH 7.0, while for BAA, the conformational stability in urea is calculated to be 2.22 kcal/mol. A structure-function relationship study of BLA reveals the non-coincidental unfolding by far UV-CD, enzyme activity and tryptophan fluorescence which indicates the presence of partially unfolded intermediates. The existence of intermediates in BLA during GdmCl induced unfolding was further confirmed by ANS fluorescence. The unfolding kinetics of both enzymes showed biphasic nature with slower unfolding of BLA compare to BAA pointing towards the higher kinetic stability of BLA than BAA. Taken together, our work demonstrates that the higher stability of BLA is mainly due to the combination of ionic and hydrophobic interactions.