Gonzalescarr8600
Ciénaga Grande de Santa Marta lagoon complex, located in the Colombian Caribbean, is a highly degraded estuarine system, in which massive deaths of organisms have occurred since the 1990s, causing socioeconomic effects on the inhabitants, who are mostly artisanal fishermen. These deaths have been attributed to the deoxygenation of the water at night, as a result of the eutrophication of the system. To understand the variability of dissolved oxygen and its relationship with other water quality variables, the monthly time series collected between 2001 and 2019, in seven stations of the Pajarales Complex (western side of the estuarine complex), were analyzed. Analyzes showed that there are significant differences between stations, as well as between the surface and the bottom of the water, indicating that the behavior of oxygen in the system is not homogeneous, a product of the hydrodynamics of the system. Also, temporal differences were found related to the periods of rain and drought, even with larger-scale climatic events such as El Niño and La Niña, with the lowest concentrations being recorded during the rainy seasons. On the other hand, the analysis of the time series of the average surface temperature of the seven stations analyzed showed a slight tendency to increase over time. Results indicate that the system is very dynamic and its oxygenation conditions are determined by climatic factors that promote changes in water chemistry, such as variations in salinity, temperature, and pH, and biological activity, determined by the abundance of the organisms. Analysis of this information becomes a tool to propose an alert system that allows reducing the impact of deaths.The presence of heat, methane (CH4) and oxygen in landfill sub-surface causes initiation of spontaneous waste ignition posing severe environmental impacts. A municipal solid waste (MSW) reactor (trough) was designed to monitor landfill gases (LFGs) i.e., CH4 and CO2 and its potential from different waste categories (synthetic waste, fresh waste, 3-month, 6-month, 3-year and 5-year-old waste) collected from open MSW dumpsite. The quantity of cellulose (C), hemicellulose (H) and lignin (L) contents (C + H L) present in organic waste fraction of each waste category was determined. Results showed that fresh waste which has higher ratio of C + H L is responsible for maximum CH4 and CO2 generation i.e., 31,660 and 46,078 ml/g of volatile solid, respectively. The ratio of C + H L observed in fresh waste, 3-month, 6-month, 3-year and 5-year-old waste was 2.62, 1.70, 1.32, 1.21 and 1, respectively. The study also showed that LFG generation is directly proportional to lignocellulose biomass contents present in MSW. Artificial neural network (ANN) modelling was used for the cross validation of CH4 yield (valuable product) which showed ±4% error between experimental and predicted data.Environmental pollutants are ubiquitous in global aquatic ecosystems and may cause immunotoxicity in aquatic organisms. However, disadvantages remain in the existing in vivo immunotoxicological methods, which make it difficult to meet the increasing demands for screening and for discriminating the immunotoxicity of environmental pollutants. In this study, the immune response in zebrafish eleutheroembryo was activated by acupuncture of the caudal fin at 72 hours post fertilization (hpf), and this immune model was further validated with a well-defined immunosuppressor, beclomethasone dipropionate (BDP). It was shown that acupuncture resulted in no increase in mortality in zebrafish eleutheroembryos. The transcription and protein levels of most immune genes were significantly increased after acupuncture, which indicated that acupuncture can effectively activate the immune response in zebrafish eleutheroembryos. Following exposure to BDP (0.01-1 μmol/L), the suppressive effects on the immune system were more significant in zebrafish that received acupuncture than in zebrafish that did not receive acupuncture. Considering these advantages, including its sensitivity, safety, and simple operation, over existing methods, the established immune model of zebrafish is promising for assessing the immunotoxicity of environmental pollutants.Ozonation was widely used before ultrafiltration processes, but its effect mechanism on protein fouling is still controversial. Ozonation of bovine serum albumin (BSA) solutions was performed in the present work. The interfacial forces of BSA at the membrane surface were measured before and after ozonation. The adsorption behaviour of BSA onto the membrane surface and the fouling layer structures under different ozone dosages were also investigated. RAD1901 purchase These results were combined with the membrane fouling behaviour to identify the effect of ozonation on protein fouling. The results showed that ozonation could weaken the interaction forces between the membrane and BSA effectively, but this did not have any effect on membrane fouling. In contrast, in terms of membrane fouling behaviour after pre-ozonation, the contribution of the changes in the covalent disulfide bonds between BSA molecules outweighs those of the non-covalent bonds. The number of disulfide bonds gradually increased as the O3DOC ratio increased from 0 to 0.3, and began to decline when the O3DOC ratio was further increased to 0.45 and 0.6. This could have altered the deposition rate of foulants onto the membrane surface and the structure of the fouling layers, and may have caused the membrane fouling first to be enhanced and then to decline with increasing ozone dosages.Bisphenols are massively used in several manufacture processes such that bisphenol A (BPA) is ubiquitous in environment worldwide. After the implementation of regulations about BPA use, manufacturers have moved their production toward alternative substances structurally similar to it. Unfortunately, BPA analogues, given their structural similarity, exert also similar adverse effects. This review aims to investigate the occurrence of bisphenols (BPs) in bivalve molluscs. In this way, valuable information on the amount of BPs released into the environment in different areas are given. The current research indicates that BPA presence in bivalve molluscs has been investigated in Asia (Indian Ocean and Pacific Ocean), Europe (Mediterranean Sea, Baltic Sea and Atlantic Ocean) and America (Lake Mead, Nevada) with the highest amount of studies reported in bivalves harvested in Asian Coasts. BPA analogues are frequently detected in several matrices and their levels will continuously increase in the environment. Nevertheless, there is a current lack of studies analysing BPs other than BPA in bivalves.