Holmgaardgunter9225

Z Iurium Wiki

Verze z 15. 11. 2024, 13:54, kterou vytvořil Holmgaardgunter9225 (diskuse | příspěvky) (Založena nová stránka s textem „We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. U18666A in vivo While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.BACKGROUND Current acute myeloid leukemia (AML) therapy fails to eliminate quiescent leukemic blasts in the bone marrow, leading to about 50% of patient relapse by increasing AML burden in the bone marrow, blood, and extramedullar sites. We developed a protein-based nanoparticle conjugated to the potent antimitotic agent Auristatin E that selectively targets AML blasts because of their CXCR4 receptor overexpression (CXCR4+) as compared to normal cells. The therapeutic rationale is based on the involvement of CXCR4 overexpression in leukemic blast homing and quiescence in the bone marrow, and the association of these leukemic stem cells with minimal residual disease, dissemination, chemotherapy resistance, and lower patient survival. METHODS Monomethyl Auristatin E (MMAE) was conjugated with the CXCR4 targeted protein nanoparticle T22-GFP-H6 produced in E. coli. Nanoconjugate internalization and in vitro cell viability assays were performed in CXCR4+ AML cell lines to analyze the specific antineoplastic activine marrow and blood and blocks its dissemination to extramedullar organs in a CXCR4+ AML model. This selective drug delivery approach validates CXCR4+ AML cells as a target for clinical therapy, not only promising to improve the control of leukemic dissemination but also dramatically reducing the severe toxicity of classical AML therapy.BACKGROUND Dengue virus, an Aedes mosquito-borne flavivirus, is associated with close to 400 million reported infections per annum worldwide. Reduction of dengue virus transmission depends entirely on limiting Aedes breeding or preventing adult female contact with humans. Currently, the World Health Organization promotes the strategic approach of integrated vector management in order to optimise resources for mosquito control. MAIN TEXT Neglected tropical disease researchers focus on geographical zones where the incidence of clinical cases, and prevalence of vectors, are high. In combatting those infectious diseases such as dengue that affect mainly low-income populations in developing regions, a mosquito-centric approach is frequently adopted. This prioritises environmental factors that facilitate or impede the lifecycle progression of the vector. Climatic variables (such as rainfall and wind speed) that impact the vector's lifecycle either causally or by happenstance also affect the human host's 'lifecycle'smitted public health concerns. This would take a 'problem definition' rather than a 'solution-finding' approach, particularly when considering problems in which climate impacts simultaneously on human and vector vulnerability.BACKGROUND Inadequate acetabular component orientation is associated with postoperative impingement, dislocation, and accelerated polyethylene wear. Computed tomography (CT)-based navigation systems provide accuracy for total hip arthroplasty (THA) but are not available in all facilities. Accelerometer-based navigation systems are inexpensive, but their accuracy remains undetermined. This study compares the accuracy of cup orientation in THA using CT-based and accelerometer-based navigation systems. METHODS This retrospective study included 35 consecutive patients (11 males, 24 females; mean age, 65 years) who underwent primary cementless THA via an anterolateral approach in the supine position. Both CT-based and accelerometer-based navigation systems were used simultaneously. The accuracy of cup orientation was compared between the two systems using postoperative CT. RESULTS The accuracy of cup inclination was 2.7° ± 2.0° in the CT-based group and 3.3° ± 2.4° in the accelerometer-based group. The accuracy of cup anteversion was 2.8° ± 2.6° in the CT-based group and 3.4° ± 2.2° in the accelerometer-based group. No significant difference was observed in cup inclination (p = 0.29) or cup anteversion (p = 0.34) between CT-based and accelerometer-based navigation. CONCLUSIONS The accuracy of cup positioning did not differ significantly between CT-based and accelerometer-based navigation systems.BACKGROUND Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance.

Autoři článku: Holmgaardgunter9225 (Turan Berger)