Weinermonroe8541
Near infrared (NIR) light activated fluorescence imaging and photodynamic therapy hold great potential for tumor treatment in deep tissues. Development of effective theranostic nanosystems to integrate both functions is becoming an attractive route for tumor diagnosis and therapy. Herein, nitrogen (N), sulfur (S) co-doped graphene quantum dots (GQDs) were engineered on the surface of upconversion nanoparticles (UCNPs) to form GUCNP nanosystems, where fluorescence resonance energy transfer (FRET) from UCNPs to GQDs could significantly facilitate the NIR fluorescence enhancement and NIR light activated singlet oxygen (1O2) generation. Under 980 nm laser irradiation, UCNPs could emit green and NIR fluorescence, where the wavelength of green fluorescence matched the excitation band of GQDs to activate 1O2 generation and produce additional NIR fluorescence. Both NIR fluorescence from UCNPs and GQDs could be used for cell and animal fluorescence imaging, and the generated 1O2 enhanced ROS production, phase II enzyme expression, apoptosis and cell death in 4T1 cells, as a result of tumor growth inhibition in 4T1 tumor-bearing mice. GUCNP nanosystems may pave a new way for cancer therapy.Confocal Raman microspectral analysis and imaging were used to elucidate the drug response of osteosarcoma (OS) to cisplatin. Raman spectral data were obtained from OS cells that were untreated (UT group) and treated with 20 µM (20T group) and 40 µM (40T group) cisplatin for 24 hours. Statistical analysis of the changes in specific Raman signals was performed using a one-way ANOVA and multiple Tukey's honest significant difference (HSD) post hoc tests. Principal component analysis-linear discriminant analysis (PCA-LDA) was used to highlight the featured cellular drug responses based on the obtained spectral information. For spectral imaging analysis, k-means cluster analysis (KCA) was adopted to clarify the effect of cisplatin dose changes on the subcellular structure and its biochemical composition. The results suggest that the major biochemical changes induced by cisplatin in OS cells undergoing apoptosis are reduced protein and nucleic acid content. Through univariate analysis, the changes in the distribution of nucleic acids in OS cells induced by different doses of cisplatin were obtained. The combination of Raman spectroscopy and multivariate analysis shows that cisplatin mainly acts on the nucleus and causes changes in the secondary structure of proteins. These results indicate that Raman imaging technology has the potential to offer the basis of dose optimization for personalized cancer treatment by helping to understand in vitro cellular drug interactions.A mesoporous silica nanoparticle (MSN)-based nanoplatform has attracted growing attention in the biomedical field due to the unique characteristics of MSNs including a high surface area, tunable pore sizes, colloidal stability, ease of functionalization, and desirable biocompatibility. Typically, MSNs are designed as nanocarriers for the incorporation of a variety of contrast agents for bioimaging, which can address the intrinsic drawbacks of contrast agents, including poor solubility in water, rapid photobleaching, and low stability. This review summarizes the recent advances in the field of MSN-based nanoprobes for fluorescence imaging and photoacoustic (PA) imaging applications. The approaches for the incorporation of contrast agents into MSN-based nanoplatforms including encapsulating contrast agents within MSNs, covalently conjugating contrast agents on the surface or pores of MSNs, physically absorbing contrast agents in the pores of MSNs, and doping contrast agents in the framework of MSNs are introduced. MSN-based nanoprobes for fluorescence imaging and PA imaging are discussed. The enhanced fluorescence imaging and PA imaging performances of MSN-based nanoprobes relative to the bare contrast agents are introduced and the underlying mechanisms are discussed in detail. Finally, current challenges and perspectives of MSN-based nanoprobes in the bioimaging field are discussed.The negative capacitance (NC) operation of ferroelectric materials has been originally proposed based on a homogeneous Landau theory, leading to a simple NC stabilization condition expressed in terms of macroscopic quantities. A multi-domain theory, however, has pointed out the importance of microscopic parameters, such as the domain wall energy coupling constant, and it helped explain the somewhat contradicting experiments for ferroelectric capacitors with or without a metal interlayer. selleck chemicals In this work we use comprehensive numerical simulations and simplified equations to correlate the macroscopic features of the NC operation to the underlying microscopic picture. We show that, while the domain wall coupling constant plays a critical role in a quasi static operation, the transient NC operation is less sensitive to this parameter. In particular, ferroelectric capacitors with a very small coupling constant can still display a robust transient NC behavior, closely tracking the 'S'-shaped polarization versus field curve and with negligible hysteresis. Our results have been developed in the framework of a systematic comparison between simulations and experiments, and they provide both a better understanding of the NC operation and a sound basis for the design of future NC based devices.Whole organ or tissue decellularized matrices are a promising scaffold for tissue engineering because they maintain the specific memory of the original organ or tissue. A whole organ or tissue decellularized matrix contains extracellular matrix (ECM) components, and exhibits ultrastructural and mechanical properties, which could significantly regulate the fate of stem cells. To better understand the memory function of whole organ decellularized matrices, we constructed a heart decellularized matrix and seeded cross-embryonic layer stem cells - neural stem cells (NSCs) to repopulate the matrix, engineering cardiac tissue, in which a large number of NSCs differentiated into the neural lineage, but besides that, NSCs showed an obvious tendency of trans-differentiating into cardiac lineage cells. The results demonstrated that the whole heart decellularized microenvironment possesses memory function. To reveal the underlying mechanism, TMT-based quantitative proteomics analysis was used to identify the differently expressed proteins in the whole heart decellularized matrix compared with a brain decellularized matrix.