Fosterkold2389

Z Iurium Wiki

Verze z 15. 11. 2024, 12:37, kterou vytvořil Fosterkold2389 (diskuse | příspěvky) (Založena nová stránka s textem „PURPOSE To investigate the fragmentation capacity, clearance time, and drilling speed of combined ultrasonic with impact dual-energy and single energy ultr…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

PURPOSE To investigate the fragmentation capacity, clearance time, and drilling speed of combined ultrasonic with impact dual-energy and single energy ultrasonic lithotripter devices. METHODS Stone fragmentation and clearance tests were performed under direct view in an underwater layered hemisphere by four different operators using artificial stones (n = 10/operator). Time for complete clearance was measured. Drilling tests were performed using an underwater setup, consisting of a mounting rack for fixing the lithotripter handpiece with the probe in vertical position and in contact with the stone phantom placed on one side of a balance for defined and constant contact application pressure equivalent to 450 g load. Time until complete perforation or in case of no perforation, the penetration depth after 60 s into the stone sample was recorded. Four devices, one single energy device (SED), one dual-energy dual probe (DEDP), two dual-energy single probe (DESP-1, DESP-2), with different parameters were tested. RESULTS Stone fragmentation and clearance speed were significantly faster for dual-energy device DESP-1 compared to all other devices (p  less then  0.001). Using DESP-1, the clearance time needed was 26.0 ± 5.0 s followed by DESP-2, SED and DEDP requiring 38.4 ± 5.8 s, 40.1 ± 6.3 s and 46.3 ± 11.6 s, respectively. Regarding the drilling speed, DESP-1 was faster compared to all other devices used (p  less then  0.05). While the drilling speed of DESP-1 was 0.69 ± 0.19 mm/s, compared to 0.49 ± 0.18 mm/s of DESP-2, 0.47 ± 0.09 mm/s of DEDP, and 0.19 ± 0.03 mm/s of SED. CONCLUSIONS The dual-energy/single-probe device combining ultrasonic vibrations with electromechanical impact was significantly faster in fragmentation and clearing stone phantoms as well as in drilling speed compared to all other devices.A. johnsonii and P. fluorescens are the well-known specific spoilage organisms in aquatic products and the study of the interactions between A. johnsonii and P. fluorescens are limited. This study aims to evaluate the growth kinetics, spoilage potential and interactions of A. johnsonii and P. fluorescens isolated from spoiled bigeye tuna (Thunnus obesus) by inoculating into sterile fish slices and stored at 4 °C for 6 days. The growth kinetics of A. johnsonii and P. fluorescens were fitted with Baranyi and Roberts model. The chemical indexes (total volatile base nitrogen (TVB-N), trimethylamine (TMA), pH, proteolytic activity and protein content) of each inoculated block of bigeye tuna were increased during refrigerated storage. Moreover, the higher contents of chemical indexes were observed in co-culture with A. johnsonii and P. fluorescens compared with single culture of A. johnsonii and P. fluorescens. In addition, atomic force microscopy (AFM) observation of co-culturing A. johnsonii and P. fluorescens inoculation into sterile fish slices revealed damage of myofibrillar protein structures and the protein degradation. Based on these parameters, a rapid method to evaluate spoilage potential of A. johnsonii and P. fluorescens was positively correlated with TVB-N value, TMA value and pH value (P  less then  0.05) by the correlation coefficient. Consequently, spoilage potential of microorganisms became stronger evaluated in a mixed culture than single culture. This paper provides insight for a detection method of interactions of A. johnsonii and P. fluorescens during refrigerated storage.A fungus, designated as strain SS2 able to degrade aliphatic polyesters, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), was isolated from soil. Strain SS2 was identified through rDNA gene sequencing and showed maximum closeness to Penicillium oxalicum. The newly isolated P. oxalicum strain SS2 had completely degraded PHB and PHBV both in emulsion and films form within 36-48 h at 30 °C. Furthermore, P. oxalicum SS2 degraded PHB and PHBV films in soil environment in lab-built soil microcosms within 1 week. The polymer films were evaluated for changes after degradation through scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR). The PHBV depolymerase enzyme was purified to homogeneity through column chromatography and molecular mass was found approximately 36 kDa. The depolymerase was stable over a wide range of temperature (15-60 °C) and pH (3.0-8.0) with optimum 40 °C and pH 5.0. selleckchem The enzyme activity was significantly affected by various metal ions and surfactants. The enzyme activity was strongly enhanced in the presence of divalent cationic metal Cu2+ while inhibited by Zn2+ and non-polar detergents Tween 20 and Tween 60. Finally, it is concluded that P. oxalicum strain SS2 has profound degradation capabilities, and can be applied for the treatment of plastic-contaminated environments.Cohesin is a conserved, ring-shaped protein complex that topologically entraps DNA. This ability makes this member of the structural maintenance of chromosomes (SMC) complex family a central hub of chromosome dynamics regulation. Besides its essential role in sister chromatid cohesion, cohesin shapes the interphase chromatin domain architecture and plays important roles in transcriptional regulation and DNA repair. Cohesin is loaded onto chromosomes at centromeres, at the promoters of highly expressed genes, as well as at DNA replication forks and sites of DNA damage. However, the features that determine these binding sites are still incompletely understood. We recently described a role of the budding yeast RSC chromatin remodeler in cohesin loading onto chromosomes. RSC has a dual function, both as a physical chromatin receptor of the Scc2/Scc4 cohesin loader complex, as well as by providing a nucleosome-free template for cohesin loading. Here, we show that the role of RSC in sister chromatid cohesion is conserved in fission yeast. We discuss what is known about the broader conservation of the contribution of chromatin remodelers to cohesin loading onto chromatin.

Autoři článku: Fosterkold2389 (Joensen Hodge)