Griffinsherman6444
Tissue macrophages play an important role in organ homeostasis, immunity and the pathogenesis of various inflammation-driven diseases. One major challenge has been to selectively study resident macrophages in highly heterogeneous organs such as kidney. To address this problem, we adopted a Translational Ribosome Affinity Purification (TRAP)- approach and designed a transgene that expresses an eGFP-tagged ribosomal protein (L10a) under the control of the macrophage-specific c-fms promoter to generate c-fms-eGFP-L10a transgenic mice (MacTRAP). Rigorous characterization found no gross abnormalities in MacTRAP mice and confirmed transgene expression across various organs. Immunohistological analyses of MacTRAP kidneys identified eGFP-L10a expressing cells in the tubulointerstitial compartment which stained positive for macrophage marker F4/80. Inflammatory challenge led to robust eGFP-L10a upregulation in kidney, confirming MacTRAP responsiveness in vivo. We successfully extracted macrophage-specific polysomal RNA from MacTRAP kidneys and conducted RNA sequencing followed by bioinformatical analyses, hereby establishing a comprehensive and unique in vivo gene expression and pathway signature of resident renal macrophages. In summary, we created, validated and applied a new, responsive macrophage-specific TRAP mouse line, defining the translational profile of renal macrophages and dendritic cells. selleck chemicals This new tool may be of great value for the study of macrophage biology in different organs and various models of injury and disease.Mountain pine beetle (MPB) outbreaks have caused major economic losses and ecological consequences in North American pine forests. Ecological and environmental factors impacting MPB life-history and stands susceptibility can help with the detection of MPB infested trees and thereby, improve control. Temperatures, water stress, host characteristics, and beetle pressure are among those ecological and environmental factors. They play different roles on MPB population dynamics at the various stages of an outbreak and these roles can be affected by intensive management. However, to make detailed connections between ecological and environmental variables and MPB outbreak phases, a deeper quantitative analysis on local scales is needed. Here, we used logistic regressions on a highly-detailed and georeferenced data set to determine the factors driving MPB infestations for the different phases of the current isolated MPB outbreak in Cypress Hills. While we showed that the roles of ecological and environmental factors in a forest intensively controlled for MPB are consistent with the literature for uncontrolled forests, we determined how these factors shifted through onset, peak, and collapse phases of the intensively controlled forest. MPB presence mostly depends on nearby beetle pressure, notably for the outbreak peak. However additional weather and host variables are necessary to achieve high predictive ability for MPB outbreak locations. Our results can help managers make appropriate decisions on where and how to focus their effort, depending on which phase the outbreak is in.STUDY DESIGN Case study. OBJECTIVE To present a framework for developing an International Classification of Functioning, Disability and Health (ICF)-based documentation system in spinal cord injury (SCI)-specific rehabilitation. SETTING Data collection took place at Maharaj Hospital, Thailand. The preparatory studies and analysis were performed at Swiss Paraplegic Research, Switzerland. METHODS Data collected from interviews and health records of four SCI cases across the continuum of care (acute, post-acute, early and late long term) were linked to ICF categories using established ICF linking rules. The resulting categories were compared with selected ICF sets (ICF Generic-30, ICF core sets for SCI and multiple sclerosis) to determine the extent of coverage. Furthermore, the context of applicable services was described systematically. RESULTS Less than half of the ICF categories in the defined ICF sets were covered by clinical assessment tools. Low correspondence was found predominantly in acute and late long-term phase. Least well covered were categories of activities and participations and environmental factors. The correspondence of categories increased when considering the additional ICF categories identified from patient interviews. The description of rehabilitation services provided in each case classified according to the dimensions of service provider, funding, and service delivery. CONCLUSIONS There is a need to promote the systematic and standardized assessment of functioning among health professionals working in the field of SCI in developing countries. This study describes basic steps toward developing a standardized ICF-based system for assessing and reporting functioning outcomes in SCI rehabilitation and across the continuum of care.Orbital observation has revealed a rich record of fluvial landforms on Mars, with much of this record dating 3.6-3.0 Ga. Despite widespread geomorphic evidence, few analyses of Mars' alluvial sedimentary-stratigraphic record exist, with detailed studies of alluvium largely limited to smaller sand-bodies amenable to study in-situ by rovers. These typically metre-scale outcrop dimensions have prevented interpretation of larger scale channel-morphology and long-term basin evolution, vital for understanding the past Martian climate. Here we give an interpretation of a large sedimentary succession at Izola mensa within the NW Hellas Basin rim. The succession comprises channel and barform packages which together demonstrate that river deposition was already well established >3.7 Ga. The deposits mirror terrestrial analogues subject to low-peak discharge variation, implying that river deposition at Izola was subject to sustained, potentially perennial, fluvial flow. Such conditions would require an environment capable of maintaining large volumes of water for extensive time-periods, necessitating a precipitation-driven hydrological cycle.Water and nitrogen stresses are major constraints for agricultural and forest productivity. Although the effects of water scarcity or nitrogen stress on plant growth, physiology, and yield have been widely studied, few studies have assessed the combined effects of both stresses. In the present study, we investigated the effects of different nitrogen forms (NO3-N, NH4+-N, and a combination of NO3-N + NH4+-N) on antioxidant enzyme activity, osmotic regulatory substances, and nitrogen assimilation in Chinese fir (Cunninghamia lanceolata) plantlets under drought stress (induced by 10% polyethylene glycol). We found that different N ionic forms had different effects on drought-stressed plantlets. Nitrogen supply greatly increased the activities of superoxide dismutase (SOD), peroxidase (POD) and polyphenol oxidase (PPO) when plantlets were exposed to water stress. The malondialdehyde (MDA) contents significantly decreased under the NH4+ + water stress treatment. The proline (Pr) contents significantly increased in both the NO3-N and NH4+-N + water stress treatment.