Gravesencrockett1512

Z Iurium Wiki

Verze z 14. 11. 2024, 23:18, kterou vytvořil Gravesencrockett1512 (diskuse | příspěvky) (Založena nová stránka s textem „Temple and Kagami-Ogata syndromes are genomic imprinting diseases caused by maternal and paternal duplication of human chromosome 14, respectively. They ex…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Temple and Kagami-Ogata syndromes are genomic imprinting diseases caused by maternal and paternal duplication of human chromosome 14, respectively. They exhibit different postnatal muscle-related symptoms as well as prenatal placental problems. Using the mouse models for these syndromes, it has been demonstrated that retrotransposon gag like 1 [Rtl1, also known as paternally expressed 11 (Peg11)] located in the mouse orthologous imprinted region is responsible for the prenatal placental problems because it is an essential placental gene for maintenance of fetal capillary network during gestation. However, the causative imprinted gene for the postnatal muscle-related symptoms remains unknown. Here, we demonstrate that Rtl1 also plays an important role in fetal/neonatal skeletal muscle development its deletion and overproduction in mice lead to neonatal lethality associated with severe but distinct skeletal muscle defects, similar to those of Temple and Kagami-Ogata syndromes, respectively. Thus, it is strongly suggested that RTL1 is the major gene responsible for the muscle defects in addition to the placental defects in these two genomic imprinting diseases. This is the first example of an LTR retrotransposon-derived gene specific to eutherians contributing to eutherian skeletal muscle development.Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and has since become a global pandemic. Pathogen-specific Abs are typically a major predictor of protective immunity, yet human B cell and Ab responses during COVID-19 are not fully understood. In this study, we analyzed Ab-secreting cell and Ab responses in 20 hospitalized COVID-19 patients. The patients exhibited typical symptoms of COVID-19 and presented with reduced lymphocyte numbers and increased T cell and B cell activation. Importantly, we detected an expansion of SARS-CoV-2 nucleocapsid protein-specific Ab-secreting cells in all 20 COVID-19 patients using a multicolor FluoroSpot Assay. Out of the 20 patients, 16 had developed SARS-CoV-2-neutralizing Abs by the time of inclusion in the study. SARS-CoV-2-specific IgA, IgG, and IgM Ab levels positively correlated with SARS-CoV-2-neutralizing Ab titers, suggesting that SARS-CoV-2-specific Ab levels may reflect the titers of neutralizing Abs in COVID-19 patients during the acute phase of infection. Last, we showed that IL-6 and C-reactive protein serum concentrations were higher in patients who were hospitalized for longer, supporting the recent observations that IL-6 and C-reactive protein could be used as markers for COVID-19 severity. Altogether, this study constitutes a detailed description of clinical and immunological parameters in 20 COVID-19 patients, with a focus on B cell and Ab responses, and describes tools to study immune responses to SARS-CoV-2 infection and vaccination.T regulatory cells (Tregs) play a critical role in controlling the immune response, often limiting pathogen-specific cells to curb immune-mediated damage. Studies in human infants have reported an increased representation of Tregs in these individuals. However, how these cells differ from those in adults at various sites and how they respond to activation signals is relatively unknown. In this study, we used a newborn nonhuman primate model to assess Treg populations present at multiple sites with regard to frequency and phenotype in comparison with those present in adult animals. We found that Foxp3+ cells were more highly represented in the T cell compartment of newborn nonhuman primates for all sites examined (i.e., the spleen, lung, and circulation). In the spleen and circulation, newborn-derived Tregs expressed significantly higher levels of Foxp3 and CD25 compared with adults, consistent with an effector phenotype. Strikingly, the phenotype of Tregs in the lungs of adult and infant animals was relatively similar, with both adult and newborn Tregs exhibiting a more uniform PD-1+CD39+ phenotype. Finally, in vitro, newborn Tregs exhibited an increased requirement for TCR engagement for survival. Further, these cells upregulated CD39 more robustly than their adult counterpart. Together, these data provide new insights into the quantity of Tregs in newborns, their activation state, and their potential to respond to activation signals.The reliable prediction of the affinity of candidate peptides for the MHC is important for predicting their potential antigenicity and thus influences medical applications, such as decisions on their inclusion in T cell-based vaccines. In this study, we present a rapid, predictive computational approach that combines a popular, sequence-based artificial neural network method, NetMHCpan 4.0, with three-dimensional structural modeling. We find that the ensembles of bound peptide conformations generated by the programs MODELLER and Rosetta FlexPepDock are less variable in geometry for strong binders than for low-affinity peptides. In tests on 1271 peptide sequences for which the experimental dissociation constants of binding to the well-characterized murine MHC allele H-2Db are known, by applying thresholds for geometric fluctuations the structure-based approach in a standalone manner drastically improves the statistical specificity, reducing the number of false positives. buy RGT-018 Furthermore, filtering candidates generated with NetMHCpan 4.0 with the structure-based predictor led to an increase in the positive predictive value (PPV) of the peptides correctly predicted to bind very strongly (i.e., Kd less then 100 nM) from 40 to 52% (p = 0.027). The combined method also significantly improved the PPV when tested on five human alleles, including some with limited data for training. Overall, an average increase of 10% in the PPV was found over the standalone sequence-based method. The combined method should be useful in the rapid design of effective T cell-based vaccines.Germinal centers (GCs) are a structure in which B cell populations are clonally expanded, depending on their affinities to Ag. Although we previously isolated a characteristic protein called dedicator of cytokinesis 11 (DOCK11) from GC B cells, limited information is available on the roles of DOCK11 in GC B cells. In this study, we demonstrate that DOCK11 may contribute to the expansion of Ag-specific populations among GC B cells upon immunization of mice. The lack of DOCK11 in B cells resulted in the lower frequency of Ag-specific GC B cells along with enhanced apoptosis upon immunization. Under competitive conditions, DOCK11-deficient B cells were dramatically prevented from participating in GCs, in contrast to DOCK11-sufficient B cells. However, minor impacts of the DOCK11 deficiency were identified on somatic hypermutations. Mechanistically, the DOCK11 deficiency resulted in the suppression of B cell-intrinsic signaling in vitro and in vivo. Although DOCK11 expression by B cells was required for the induction of T follicular helper cells at the early stages of immune responses, minor impacts were identified on the expansion of Ag-specific populations among GC B cells.

Autoři článku: Gravesencrockett1512 (Hyllested Stougaard)