Adamsalford4474
In addition, the bilayer geometric phase elements can be easily extended to multilayer, which significantly improves the capability of manipulating the incident light field.Vanadium dioxide (VO2) emerges as an attractive plasmonic material due to its unique reversible thermal-responsive phase transition and the promising application in energy-saving smart windows. Here, by optimizing the geometry of VO2 nano-cylinder arrays, we demonstrate a significant performance enhancement for energy-efficient thermochromic windows. Such a performance enhancement relies on the on-off behavior of plasmonic resonance in the extremely high packing density of VO2 nano-cylinder arrays. Different from the typical plasmonic material, silver, VO2 nano-cylinders are characterized to have strong absorbance in near-infrared spectrum with significantly weaker plasmonic coupling to their neighbors, making them suitable to be arranged with a high packing density. The VO2 nano-cylinder arrays exhibit a 160% luminous transmittance increment, comparing to a flat film with the same solar modulation of ∼10%. The work provides a better understanding of the plasmonic behavior on phase-change VO2 and an efficient method to enhance smart window performance.Bound states in the continuum (BICs) have become a new trend in the area of metaoptics and nanophotonics. Strong interactions in electromagnetic fields are analogous to electron transitions in atoms, giving rise to BICs with vanishing radiative losses. However, it is still a great challenge to realize BICs in the lossy plasmonic systems. For this problem, we propose a supercavity-like plasmonic nanocavity consisting of an Au nanorod deposited inside an Au symmetric split ring, and explore the possibility of exciting quasi-BICs that own finite but high quality (Q) factors. In such hybrid configuration, the excited resonances can be easily engineered by modifying the rotation angle or the length of the Au nanorod. With the integration of such nanocavity in silicon (Si) waveguides, sharp transmission spectra could be achieved with fiber-chip in-parallel excitations and detections. Besides, the ultracompact geometry of this plasmonic nanocavity provides a route to boost enhanced electric fields, thus improving sensing performances significantly. Our study not only offers a novel platform for the realization of chip-scale quasi-BICs, but extends functionalities of photonic-plasmonic hybrid circuits.The structural coloration of glass induced by submicron structures is eco-friendly, ink-free, and has profound scientific significance. However, it is difficult to manufacture the submicron structures for glass optics due to the high hardness of glass and the miniature size of the microstructures. In this paper, the diffraction manipulation mechanism of groove shape to structural coloration and optimization theory are studied by establishing the theoretical and simulation mode. Moreover, a newly-developed axial-feed fly-cutting (AFC) technology and the PGM technology are introduced to precisely create the designed submicron V-shape grooves and structural color pattern on a Ni-P mold and then replicating them on a glass surface. Between these two kinds of typical submicron grooves that can be machined by mechanical cutting technology, it is found that the diffraction intensity and efficiency of V-shape grooves are higher than these of jagged-shape grooves, which indicates that V-shape grooves is more suitable to be used for structural coloration with high brightness. The structural color resolution is dramatically increased with the reduction of groove spacing and can be flexibly regulated by AFC, which significantly contributes to the structural coloration manufacturing. Structural pixel segments composed of submicron grooves are arranged row-by-row to form color patterns, and the letters of different colors are fabricated on the mold and transferred to the glass surface. Methods of optical diffraction manipulation, flexible manufacturing of submicron structures, and structural color image construction proposed in this paper for the production of a structural color pattern are beneficial to a wide range of fields.In this manuscript we demonstrate a method to reconstruct the wavefront of focused beams from a measured diffraction pattern behind a diffracting mask in real-time. The phase problem is solved by means of a neural network, which is trained with simulated data and verified with experimental data. The neural network allows live reconstructions within a few milliseconds, which previously with iterative phase retrieval took several seconds, thus allowing the adjustment of complex systems and correction by adaptive optics in real time. The neural network additionally outperforms iterative phase retrieval with high noise diffraction patterns.Since 2D materials are typically much more efficient to absorb in-plane polarized light than out-of-plane polarized light, keeping the light polarization in-plane at the 2D material is revealed to be a crucial factor other than critical coupling in light absorption enhancement in a 2D material integrated with a light coupling structure. When the composite of a metal-insulator-metal structure and a 2D material changes from the magnetic resonator form to the metasurface Salisbury screen one, the field polarization at the 2D material changes from a mainly out-of-plane status to a mainly in-plane status. As a result, for graphene, the absorptance enhancement is increased by 1.6 to 4.2 times, the bandwidth enlarged by 3.6 to 6.4 times, and the metal loss suppressed by 7.4 to 24 times in the mid- to far-infrared range, leading to the absorptance of graphene approaching 90% in the mid-infrared regime and 100% in the THz regime. For monolayer black phosphorus, the absorptance enhancement at the wavelength of 3.5 µm is increased by 5.4 times, and the bandwidth enlarged by 1.8 times. For monolayer MoS2, the averaged absorptance in the visible-near infrared range is enhanced by 4.4 times from 15.5% to 68.1%.Plasma edges in metals typically occur in the visible range, producing characteristic colors of metals. In a lightly doped semiconductor, the plasma edge can occur in the terahertz (THz) frequency range. Rhapontigenin solubility dmso Due to low scattering rates and variable electron densities in semiconductors, such THz plasma edges can be extremely sharp and greatly tunable. Here, we show that an ultrasharp THz plasma edge exists in a lightly n-doped InSb crystal with a record-high transmittance slope of 80 dB/THz. The frequency at which this sharp edge happens can be readily tuned by changing the temperature, electron density, scattering rate, and sample thickness. The edge frequency exhibited a surprising increase with decreasing temperature below 15 K, which we explain as a result of a weak-to-strong transition in the scattering rate, going from ωτ ≫ 1 to ωτ ∼ 1. These results indicate that doped narrow-gap semiconductors provide a versatile platform for manipulating THz waves in a controllable manner, especially as a high-pass filter with an unprecedented on/off ratio.