Brixkahn8810
Interventions were more successful when materials were delivered via in-person counseling and when study participants were in the precontemplation or contemplation phases at baseline.
The findings suggest that there is inconsistent evidence to support the use of interventions based on the transtheoretical model to improve PA in adult populations. Interventions were more successful when materials were delivered via in-person counseling and when study participants were in the precontemplation or contemplation phases at baseline.The ingestion of quinine, a bitter tastant, improves short-term (30 s) cycling performance, but it is unclear whether this effect can be integrated into the last effort of a longer race. The purpose of this study was to determine whether midtrial quinine ingestion improves 3,000-m cycling time-trial (TT) performance. Following three familiarization TTs, 12 well-trained male cyclists (mean ± SD mass = 76.6 ± 9.2 kg, maximal aerobic power = 390 ± 50 W, maximal oxygen uptake = 4.7 ± 0.6 L/min) performed four experimental 3,000-m TTs on consecutive days. This double-blind, crossover design study had four randomized and counterbalanced conditions (a) Quinine 1 (25-ml solution, 2 mM of quinine); (b) Quinine 2, replicate of Quinine 1; (c) a 25-ml sweet-tasting no-carbohydrate solution (Placebo); and (d) 25 ml of water (Control) consumed at the 1,850-m point of the TT. The participants completed a series of perceptual scales at the start and completion of all TTs, and the power output was monitored continuously throughout all trials. The power output for the last 1,000 m for all four conditions was similar mean ± SD Quinine 1 = 360 ± 63 W, Quinine 2 = 367 ± 63 W, Placebo = 364 ± 64 W, and Control = 367 ± 58 W. There were also no differences in the 3,000-m TT power output between conditions. The small perceptual differences between trials at specific 150-m splits were not explained by quinine intake. RXC004 mw Ingesting 2 mM of quinine during the last stage of a 3,000-m TT did not improve cycling performance.There is growing evidence that caffeine and coffee ingestion prior to exercise provide similar ergogenic benefits. However, there has been a long-standing paradigm that habitual caffeine intake may influence the ergogenicity of caffeine supplementation. The aim of the present study was to investigate the effect of habitual caffeine intake on 5-km cycling time-trial performance following the ingestion of caffeinated coffee. Following institutional ethical approval, in a double-blind, randomized, crossover, placebo-controlled design, 46 recreationally active participants (27 men and 19 women) completed a 5-km cycling time trial on a cycle ergometer 60 m in following the ingestion of 0.09 g/kg coffee providing 3 mg/kg of caffeine, or a placebo. Habitual caffeine consumption was assessed using a caffeine consumption questionnaire with low habitual caffeine consumption defined as less then 3 and ≥6 mg · kg-1 · day-1 defined as high. An analysis of covariance using habitual caffeine intake as a covariant was performed to establish if habitual caffeine consumption had an impact on the ergogenic effect of coffee ingestion. Sixteen participants were classified as high-caffeine users and 30 as low. Ingesting caffeinated coffee improved 5-km cycling time-trial performance by 8 ± 12 s; 95% confidence interval (CI) [5, 13]; p less then .001; d = 0.30, with low, 9±14 s; 95% CI [3, 14]; p = .002; d = 0.18, and high, 8 ± 10 s; 95% CI [-1, 17]; p = .008; d = 0.06, users improving by a similar magnitude, 95% CI [-12, 12]; p = .946; d = 0.08. In conclusion, habitual caffeine consumption did not affect the ergogenicity of coffee ingestion prior to a 5-km cycling time trial.
To compare the severity outcomes of COVID-19 disease between patients with and without regular sports participation.
In a cross-sectional study, the authors investigated all patients who visited the emergency department of Imam Khomeini hospital with signs and symptoms of COVID-19 from February 20 to April 20, 2020. Then the authors assessed all patient outcomes (outpatient vs hospitalization or death). Finally, the authors compared the outcomes between athletes with regular sports participation and others, adjusting for confounding factors of age and sex.
Of all 4694 adult patients, 249 individuals (137 males and 112 females with mean [SD] age of 36.45 [9.77]y) had regular participation in different sport disciplines. Overall, 30 (12%) athletes were hospitalized or died (30 and 0, respectively) compared with 957 (21.5%) nonathletes (878 and 79, respectively). Athletes with regular sports participation were 1.49 times less likely to be hospitalized (P = .044).
Regular sports participation may positively affect the clinical outcome, regardless of confounding factors of age and sex. The probability of hospitalization in athletes with regular sports participation was 33% lower than nonathletes. However, more longitudinal studies are needed to determine the causal effects.
Regular sports participation may positively affect the clinical outcome, regardless of confounding factors of age and sex. The probability of hospitalization in athletes with regular sports participation was 33% lower than nonathletes. However, more longitudinal studies are needed to determine the causal effects.The effects of acute consumption of L-Arginine (L-Arg) in healthy young individuals are not clearly defined, and no studies on the effects of L-Arg in individuals with abnormal body mass index undertaking strenuous exercise exist. Thus, we examined whether supplementation with L-Arg diminishes cardiopulmonary exercise testing responses, such as ventilation (VE), VE/VCO2, oxygen uptake (VO2), and heart rate, in response to an acute session of high-intensity interval exercise (HIIE) in overweight men. A double-blind, randomized crossover design was used to study 30 overweight men (age, 26.5 ± 2.2 years; body weight, 88.2 ± 5.3 kilogram; body mass index, 28.0 ± 1.4 kg/m2). Participants first completed a ramped-treadmill exercise protocol to determine VO2max velocity (vVO2max), after which they participated in two sessions of HIIE. Participants were randomly assigned to receive either 6 g of L-Arg or placebo supplements. The HIIE treadmill running protocol consisted of 12 trials, including exercise at 100% of vVO2max for 1 min interspersed with recovery intervals of 40% of vVO2max for 2 min.