Truelsendalgaard2533
98 °C (Medellin), while pollution removal ranged from 488 kg PM2.5/yr (Zomba) to 48,400 kg PM2.5/yr (Dhaka). Percentage population with access to nearby greenspace ranged from 82% (Dhaka) to 100% (Zomba). The spatial patterns of pressure, of ecosystem service, and of maximum benefit within a city do not necessarily match, and this has implications for planning optimum locations for UGI in cities.Atmospheric particles are a major environmental health risk. Assessments of air pollution related health burden are often based on outdoor concentrations estimated at residential locations, ignoring spatial mobility, time-activity patterns, and indoor exposures. The aim of this work is to quantify impacts of these factors on outdoor-originated fine particle exposures of school children. We apply nested WRF-CAMx modelling of PM2.5 concentrations, gridded population, and school location data. Infiltration and enrichment factors were collected and applied to Athens, Kuopio, Lisbon, Porto, and Treviso. Exposures of school children were calculated for residential and school outdoor and indoor, other indoor, and traffic microenvironments. Combined with time-activity patterns six exposure models were created. Model complexity was increased incrementally starting from residential and school outdoor exposures. Even though levels in traffic and outdoors were considerably higher, 80-84% of the exposure to outdoor particles occurred in indoor environments. The simplest and also commonly used approach of using residential outdoor concentrations as population exposure descriptor (model 1), led on average to 26% higher estimates (15.7 μg/m3) compared with the most complex model (# 6) including home and school outdoor and indoor, other indoor and traffic microenvironments (12.5 μg/m3). These results emphasize the importance of including spatial mobility, time-activity and infiltration to reduce bias in exposure estimates.Reservoir presence and construction has become commonplace along rivers due to the multitude of ecosystem services they provide. Many services are well recognized, including the effectiveness of sequestering both sediments and sediment-bound nutrients such as silts and phosphorus (P). Reservoirs are also capable of transforming or sequestering significant quantities of nutrients with more complex biogeochemical pathways, like nitrogen (N). Reservoir assessments, independent of inflow-outflow models, have primarily focused on a small number of systems creating a growing need to understand how reservoirs function both individually and as reservoir sequences within large rivers and their watersheds. Models have simulated the overall efficiency and drivers of reservoir nutrient deposition, but few have considered how a sequence of reservoirs alters deposition as an interdependent watershed-sediment-transport-system. In this study, we collected sediment cores from a six-reservoir sequence along a 5th - 6th order sitional patterns.The soil microbiome, existing as interconnected communities closely associated with soil aggregates, is the key driver in nutrient cycling. However, the underlying genomic information encoding the machinery of the soil microbiome involved in nutrient cycling at the soil aggregate scale is barely known. Here comparative metagenomics and genome binning were applied to investigate microbial functional profiles at the soil aggregate scale under different organic material amendments in a long-term field experiment. Soil samples were sieved into large macroaggregates (>2 mm), macroaggregates (0.25-2 mm) and microaggregates ( less then 0.25 mm). selleck inhibitor Microbial taxonomic and functional alpha diversity were significantly correlated to soil NO3- and SOC. The highest abundance of nasB, nirK, and amoA genes, which are responsible for denitrification and ammonia oxidizers driving nitrification, was observed in microaggregates. Both manure and peat treatments significantly decreased the abundance of napA and nrfA that encode enzymes involved in dissimilatory nitrate reduction to ammonium (DNRA). As a biomarker for soil inorganic P solubilization, the relative abundance of gcd was significantly increased in macroaggregates and large macroaggregates. Three nearly complete genomes of Nitrososphaeraceae (AOA) and seven bacterial genomes were shown to harbor a series of genes involved in nitrification and P solubilization, respectively. Our study provides comprehensive insights into the microbial genetic potential for DNRA and P-solubilizing activity across different soil aggregate fractions and fertilization regimes.Transformation of organic phosphorus (P) is directly related to a range of environmental factors, therefore exploring their relationships is vital to understanding the biogeochemical cycling of P and its significance in eutrophication of lake waters. In this study, a series of experiments were conducted to simulate the organic P transformation in the water under the influence of dissolved oxygen (DO), temperature and phytoplankton growth. Results showed that the transformation rate of total organic P increased with temperature, ranging from 0.02 to 0.25 mg L-1 day-1 at 5 °C, and from 0.04 to 0.72 mg L-1 day-1at 30 °C. The transformation rate of total organic P was significantly higher under anaerobic conditions than that under aerobic conditions at 20 °C and 30 °C, indicating that DO is a more important factor for the transformation of total organic P at the high temperature. However, different compounds of organic P responded differently to environmental factors. The change of orthophosphate monoester (Mono-P) content was consistent with that of total organic P when the temperature and DO were the same, but the transformation rates of phosphonate and DNA in the water were less affected by changes of temperature and DO. Additionally, the transformation rate of Mono-P was increased by the growth of phytoplankton when it was used as a P source. Although the relationships between alkaline phosphatase (ALP) activity and organic P are complex, ALP may be the main factor affecting the transformation of organic P at lower temperatures.