Bowdencurran4944
Despite the wide use of urea and ammonium as N-fertilizers, no information is available about the proper ratio useful to maximize the efficiency of their acquisition by crops. Ionomic analyses of maize seedlings fed with five different mixes of urea and ammonium indicated that after 7 days of treatment, the elemental composition of plant tissues was more influenced by ammonium in the nutrient solution than by urea. Within 24 h, similar high affinity influx rates of ammonium were measured in ammonium-treated seedlings, independently from the amount of the cation present in the nutrient solution (from 0.5 to 2.0 mM N), and it was confirmed by the similar accumulation of 15N derived from ammonium source. After 7 days, some changes in ammonium acquisition occurred among treatments, with the highest ammonium uptake efficiency when the urea-to-ammonium ratio was 31. Gene expression analyses of enzymes and transporters involved in N nutrition highlight a preferential induction of the cytosolic N-assimilatory pathway (via GS, ASNS) when both urea and ammonium were supplied in conjunction, this response might explain the higher N-acquisition efficiency when both sources are applied. In conclusion, this study provides new insights on plant responses to mixes of N sources that maximize the N-uptake efficiency by crops and thus could allow to adapt agronomic practices in order to limit the economic and environmental impact of N-fertilization.Dendrobium candidum stems are used as Chinese medicine and functional food. Red stems of D. candidum are rich in anthocyanins, which attract pollinator insects, protect the plants against environmental stress, and improve human health. The regulatory mechanisms of anthocyanin biosynthesis and stem color differentiation in D. candidum are not fully understood. Using transcriptome profiling, we identified a basic helix-loop-helix transcription factor (DcTT8) involved in anthocyanin biosynthesis in D. candidum stems. Ultraperformance liquid chromatography-tandem mass spectrometry was used to determine pigment contents and compositions in red and green stems, revealing that cyanidin is responsible for the red color. KU-57788 order DcTT8 could bind the DcF3'H and DcUFGT promoters and finely regulate DcF3'H and DcUFGT expression. Our data indicate that DcTT8 participates in anthocyanin biosynthesis and offers novel insights into the transcriptional regulation of anthocyanin biosynthesis in D. candidum.
To summarise and evaluate research on the diagnostic accuracy of clinical tests for ligamentous injury of the ankle syndesmosis.
CINAHL, Embase, and MEDLINE were searched from inception to February 12, 2021. Studies comparing clinical examination to arthroscopy, magnetic resonance imaging, or ultrasound were considered eligible. Meta-analysis was based on random effect modelling and limited to studies fulfilling all QUADAS-2 criteria. Sensitivity (SN), specificity (SP) and likelihood ratios determined diagnostic accuracy, all with 95% confidence intervals (CI).
Six studies were included (512 participants; 13 clinical tests; 29% median prevalence). No individual test was associated with both high sensitivity and high specificity. Tests with the highest sensitivity were palpation [SN 92% (95%CI 79-98)] and dorsiflexion lunge [SN 75% (95% CI 64-84%); n=2 studies]. Tests with the highest specificity were squeeze test [SP 85% (95% CI 81-89%); n=4 studies] and external rotation [SP 78% (95% CI 73-82%); n=4 studies].
Clinical examination should involve initial clustering of tests with high sensitivity (palpation; dorsiflexion lunge), followed by a test with high specificity (squeeze). However, as these tests cannot definitively stratify syndesmotic injuries into stable vs unstable, decisions on optimal management (conservative vs surgery) require additional imaging or arthroscopy.
Clinical examination should involve initial clustering of tests with high sensitivity (palpation; dorsiflexion lunge), followed by a test with high specificity (squeeze). However, as these tests cannot definitively stratify syndesmotic injuries into stable vs unstable, decisions on optimal management (conservative vs surgery) require additional imaging or arthroscopy.Interactions of nanoscale plastics with natural organic matter (NOM) and silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Polyethylene and polystyrene are the most used plastic polymers and most likely to accumulate in the environment, and thus their nano-scale interactions were investigated in this study. Deposition and release of polyethylene and polystyrene nanoscale plastics were investigated on silica and NOM-coated surfaces in the presence of different salt types (NaCl, CaCl2, MgCl2) and ionic strengths (IS). Polyethylene nanoscale plastics showed negligible deposition on silica surface, while significant deposition of polystyrene nanoscale plastics was observed on silica surface. However, both polyethylene and polystyrene nanoscale plastics showed significant deposition on NOM-coated surfaces, with polystyrene showing higher deposition. Increased IS resulted in greater deposition of both polyethylene and polystyrene nanoscale plastics on NOM-coated surfaces due to the functional groups, following DLVO theory. Deposited polyethylene nanoscale plastics on NOM-coated surfaces can be remobilized whereas deposition of polystyrene nanoscale plastics was irreversible on both silica and NOM-coated surfaces. Overall, higher deposition of nanoscale plastics on NOM-coated surfaces indicates that fate and mobility of nanoscale plastics in the environment will be significantly governed by their interactions with NOM.Many arid and semi-arid regions of the world face challenges in maintaining the water quantity and quality needs of growing populations. A drywell is an engineered vadose zone infiltration device widely used for stormwater capture and managed aquifer recharge. To our knowledge, no prior studies have quantitatively examined virus transport from a drywell, especially in the presence of subsurface heterogeneity. Axisymmetric numerical experiments were conducted to systematically study virus fate from a drywell for various virus removal and subsurface heterogeneity scenarios under steady-state flow conditions from a constant head reservoir. Subsurface domains were homogeneous or had stochastic heterogeneity with selected standard deviation (σ) of lognormal distribution in saturated hydraulic conductivity and horizontal (X) and vertical (Z) correlation lengths. Low levels of virus concentration tailing can occur even at a separation distance of 22 m from the bottom of the drywell, and 6-log10 virus removal was not achieved when a small detachment rate (kd1=1 × 10⁻⁵ min⁻¹) is present in a homogeneous domain.