Ellislangley5665
One of the biggest limitations in the study and engineering of anaerobic Clostridium organisms is the lack of strong fluorescent reporters capable of strong and real-time fluorescence. Recently, we developed a strong fluorescent reporter system for Clostridium organisms based on the FAST protein. Here, we report the development of two new strong fluorescent reporter systems for Clostridium organisms based on the HaloTag and SNAP-tag proteins, which produce strong fluorescent signals when covalently bound to fluorogenic ligands. These new fluorescent reporters are orthogonal to the FAST ligands and to each other, allowing for simultaneous labeling and visualization. We used HaloTag and SNAP-tag to label the strictly anaerobic organisms Clostridium acetobutylicum and Clostridium ljungdahlii We have also identified a new strong promoter for protein expression in C. acetobutylicum, based on the phosphotransacetylase gene (pta) from C. ljungdahlii Furthermore, the HaloTag and the SNAP-tag, in combination with the m based on the FAST protein as a first step in expanding the fluorescence-based reporters for Clostridium and other anaerobic microbial platforms. Additional strong orthogonal fluorescent proteins, with distinct emission spectra are needed to allow for (i) multispecies tracking within the growing field of microbial cocultures and microbiomes, (ii) protein localization and tracking in anaerobes, and (iii) identification and development of natural and synthetic promoters, ribosome-binding sites (RBS), and terminators for optimal protein expression in anaerobes. Here, we present two new strong fluorescent reporter systems based on the HaloTag and SNAP-tag proteins.Antimicrobial resistance (AMR) is a well-documented phenomenon in bacteria from many natural ecosystems, including wild animals. However, the specific determinants and spatial distribution of resistant bacteria and antimicrobial resistance genes (ARGs) in the environment remain incompletely understood. In particular, information regarding the importance of anthropogenic sources of AMR relative to that of other biological and ecological influences is lacking. We conducted a cross-sectional study of AMR in great horned owls (Bubo virginianus) and barred owls (Strix varia) admitted to a rehabilitation center in the midwestern United States. A combination of selective culture enrichment and shotgun metagenomic sequencing was used to identify ARGs from Enterobacteriaceae Overall, the prevalence of AMR was comparable to that in past studies of resistant Enterobacteriaceae in raptors, with acquired ARGs being identified in 23% of samples. Multimodel regression analyses identified seasonality and owl age to be importrtant role in the emergence, dissemination, and persistence of AMR. this website As such, there have been calls for better integration of wildlife into current research on AMR, including the use of wild animals as biosentinels of AMR contamination in the environment. A One Health approach can be used to gain a better understanding of all AMR sources and pathways, particularly those at the human-animal-environment interface. Our study focuses on this interface in order to assess the effect of human-impacted landscapes on AMR in a wild animal. This work highlights the value of wildlife rehabilitation centers for environmental AMR surveillance and demonstrates how metagenomic sequencing within a spatial epidemiology framework can be used to address questions surrounding AMR complexity in natural ecosystems.Enterohemorrhagic Escherichia coli (EHEC) causes serious foodborne disease worldwide. It produces the very potent Shiga toxin 2 (Stx2). The Stx2-encoding genes are located on a prophage, and production of the toxin is linked to the synthesis of Stx phages. There is, currently, no good treatment for EHEC infections, as antibiotics may trigger lytic cycle activation of the phages and increased Stx production. This study addresses how four analogs of vitamin K, phylloquinone (K1), menaquinone (K2), menadione (K3), and menadione sodium bisulfite (MSB), influence growth, Stx2-converting phage synthesis, and Stx2 production by the EHEC O157H7 strain EDL933. Menadione and MSB conferred a concentration-dependent negative effect on bacterial growth, while phylloquinone or menaquinone had little and no effect on bacterial growth, respectively. All four vitamin K analogs affected Stx2 phage production negatively in uninduced cultures and in cultures induced with either hydrogen peroxide (H2O2), ciprofloxacin, or mitomyct options is urgent. Environmental factors in our intestines can affect the virulence of EHEC and help our bodies fight EHEC infections. The ruminant intestine, the main reservoir for EHEC, contains high levels of vitamin K, but the levels are variable in humans. This study shows that vitamin K analogs can inhibit the growth of EHEC and/or production of its main virulence factor, the Shiga toxin. They may also inhibit the spreading of the Shiga toxin encoding bacteriophage. Our findings indicate that vitamin K analogs have the potential to suppress the development of serious disease caused by EHEC.Cellulolytic microorganisms play a key role in the global carbon cycle by decomposing structurally diverse plant biopolymers from dead plant matter. These microorganisms, in particular anaerobes such as Ruminiclostridium cellulolyticum that are capable of degrading and catabolizing several different polysaccharides, require a fine-tuned regulation of the biosynthesis of their polysaccharide-degrading enzymes. In this study, we present a bacterial regulatory system involved in the regulation of genes enabling the metabolism of the ubiquitous plant polysaccharide xyloglucan. The characterization of R. cellulolyticum knockout mutants suggests that the response regulator XygR and its cognate histidine kinase XygS are essential for growth on xyloglucan. Using in vitro and in vivo analyses, we show that XygR binds to the intergenic region and activates the expression of two polycistronic transcriptional units encoding an ABC transporter dedicated to the uptake of xyloglucan oligosaccharides and the two-component system itself together with three intracellular glycoside hydrolases responsible for the sequential intracellular degradation of the imported oligosaccharides into mono- and disaccharides.