Rindomlopez6624
These results showed that onionin A1 is an effective agent for controlling tumors, and that the antitumor effects observed in vivo are likely caused by reversing the antitumor immune system. Activation of the antitumor immune system by onionin A1 might be an effective adjuvant therapy for patients with osteosarcoma, ovarian cancer and other malignant tumors.
The posteromedial meniscal region is gaining interest among orthopedic surgeons, as lesions of this area has been reported to be significantly associated with anterior cruciate ligament tears. The current imaging literature is unclear.
To evaluate the diagnostic performance of MR in the detection of meniscal ramp lesions having arthroscopy as reference standard.
We retrospectively included 56 patients (mean age of 25 ± 7years; 14 females) from January to November 2017 with a arthroscopically proved ACL tear and posterior meniscocapsular separation. On preoperative MRI, two radiologists with 13 and 2 years' experience in musculoskeletal imaging assessed the presence/absence of ramp lesion, meniscotibial ligament lesion, peripheral meniscal lesion, or their combination, bone bruise. Having arthroscopy as reference standard, diagnostic performance of MRI in the evaluation of ramp area lesions was calculated. Cohen's kappa (k) and Fisher's Exact Test statistics were used.
Agreement between radiologists ranged from κ = 0.784 (meniscotibial ligament lesions) to κ = 0.918 red-red meniscal lesion. Sensitivities were 97.4% for ramp lesions, 95.8% for meniscotibial ligament lesion, 94.4% for peripheral meniscal lesions; specificities were 88.9%, 81.3%, and 97.4%, respectively; accuracies were 94.6%, 87.5%, and 96.4%, respectively. Agreement between MR and arthroscopy was almost perfect in identification of ramp lesions (κ = 0.871) and red-red zone meniscal lesions (κ = 0.908). The agreement between the two methods was substantial (κ = 0.751) for meniscotibial lesion. No significant association between tibial plateau bone bruise and the different type of lesions was found (κ ≥ 0.004 and p ≥ 0.08).
MR has high diagnostic performance in meniscal ramp area lesion assessment, with substantial to almost perfect inter-reader agreement.
MR has high diagnostic performance in meniscal ramp area lesion assessment, with substantial to almost perfect inter-reader agreement.
High-grade gliomas are among the most aggressive central nervous system primary tumors, with a high risk of recurrence and a poor prognosis. Re-operation, re-irradiation, chemotherapy are options in this setting. No-best therapy has been established. Bevacizumab was approved on the basis of two Phase 2 trials that evaluated its efficacy in patients with recurrent glioblastoma.
We have retrospectively review data of patients with high-grade glioma treated at our institution that undergone radiological or histological progression after at least one systemic treatment for recurrent disease. Bevacizumab was administered alone or in combination with chemotherapy until disease progression or unacceptable toxicity. Bevacizumab regimen was analyzed to assess PFS and OS. GSK-3 inhibitor Histological, molecular and clinical features of the entire cohort were collected.
We reviewed data from 92 patients, treated from April 2009 to November 2019, with histologically confirmed diagnosis of high-grade gliomas and recurrent disease. A PFS of 55.2%, 22.9% and 9.6% was observed at 6, 12 and 24months, respectively. Performance status, age at diagnosis (< 65 or > 65 ys.) and use of corticosteroids during bevacizumab therapy were strongly associated with PFS. The OS was 74.9% at 6months, 31.7% at 12months, 10.1% at 24months. In our cohort, 51.1% were long-term responders (PFS > 6months). Globally, bevacizumab treatment was well tolerated.
Our analysis confirms the efficacy of bevacizumab in recurrent high-grade glioma patients with an acceptable toxicity profile, in keeping with its known safety in the literature.
Our analysis confirms the efficacy of bevacizumab in recurrent high-grade glioma patients with an acceptable toxicity profile, in keeping with its known safety in the literature.Wheat is a worldwide staple food, yet some people suffer from strong immunological reactions after ingesting wheat-based products. Lactic acid bacteria (LAB) constitute a promising approach to reduce wheat allergenicity because of their proteolytic system. In this study, 172 LAB strains were screened for their proteolytic activity on gluten proteins and α-amylase inhibitors (ATIs) by SDS-PAGE and RP-HPLC. Gliadins, glutenins, and ATI antigenicity and allergenicity were assessed by Western blot/Dot blot and by degranulation assay using RBL-SX38 cells. The screening resulted in selecting 9 high gluten proteolytic strains belonging to two species Enterococcus faecalis and Lactococcus lactis. Proteomic analysis showed that one of selected strains, Lc. lactis LLGKC18, caused degradation of the main gluten allergenic proteins. A significant decrease of the gliadins, glutenins, and ATI antigenicity was observed after fermentation of gluten by Lc. lactis LLGKC18, regardless the antibody used in the tests. Also, the allergenicity as measured by the RBL-SX38 cell degranulation test was significantly reduced. These results indicate that Lc. lactis LLGKC18 gluten fermentation can be deeply explored for its capability to hydrolyze the epitopes responsible for wheat allergy.Research in the past decades shed light on the different mechanisms that underlie our capacity for cognitive control. However, the meta-level processes that regulate cognitive control itself remain poorly understood. Following the terminology from artificial intelligence, meta-control can be defined as a collection of mechanisms that (a) monitor the progress of controlled processing and (b) regulate the underlying control parameters in the service of current task goals and in response to internal or external constraints. From a psychological perspective, meta-control is an important concept because it may help explain and predict how and when human agents select different types of behavioral strategies. From a cognitive neuroscience viewpoint, meta-control is a useful concept for understanding the complex networks in the prefrontal cortex that guide higher-level behavior as well as their interactions with neuromodulatory systems (such as the dopamine or norepinephrine system). The purpose of the special issue is to integrate hitherto segregated strands of research across three different perspectives 1) a psychological perspective that specifies meta-control processes on a functional level and aims to operationalize them in experimental tasks; 2) a computational perspective that builds on ideas from artificial intelligence to formalize normative solutions to meta-control problems; and 3) a cognitive neuroscience perspective that identifies neural correlates of and mechanisms underlying meta-control.