Pearsongodwin4830
Due to consumption of more than 2% of the world's annual energy supply by Haber-Bosch process and the strongest triple bond (N≡N) in nature, directly coupling N2 with small molecules is particularly important and challenging, let alone in a catalytic fashion. Here we first demonstrate that a NNN-type pincer phosphorus complex could act as a catalyst to couple dinitrogen with a series of small molecules including carbon dioxide, formaldehyde, N-ethylidenemethylamine, and acetonitrile in the presence of diborane(4) under a mild condition by theoretical calculations. N2 fixation proceeds via a stepwise mechanism involving initial N2 activation by diborane(4), followed by intramolecular isomerization to a key intermediate (zwitterion). Such a zwitterion can be used to couple a series of small molecules with activation barriers of 23.5-25.2 kcal mol-1 . All these findings could be particularly useful for main group chemistry aimed at N2 activation.Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. (Sapindaceae) is an edible plant from the South American biodiversity that is a potential source of bioactive compounds. The mineral content and antioxidant activity of Allophylus edulis leaves were investigated, as well as the composition and the antioxidant activity of the essential oil. The mineral content was determined by ICP - OES and the antioxidant assays were assessed by ABTS, DPPH and FRAP. The essential oil was obtained by hydrodistillation and analyzed by GC/MS. Mcl-1 apoptosis Calcium, potassium, phosphorus, sulfur, and magnesium were the main minerals found in A. edulis leaves. Of the toxic metals that were present, a low level of aluminum was detected. The essential oil of A. edulis has (E)-nerolidol as major compound and both, the leaves, and the essential oil isolated from the leaves have antioxidant potential. These findings could provide a framework for developing new food and non-food products with A. edulis leaves.Digital, but delicious! The Frontiers in Medicinal Chemistry 2021 meeting, originally intended to take place in Darmstadt, carried on as an online event from March 8-10 this year. Even with pandemic restrictions, the event co-presented by the Medicinal Chemistry Division of the German Chemical Society (GDCh), the German Pharmaceutical Society (DPhG), and the Swiss Chemical Society (SCS) proved to be a success, showcasing excellent speakers and facilitating participant interaction in an ingenious virtual setting. Over 350 participants from more than 10 countries gathered to discuss the latest trends and directions in medicinal chemistry, with sessions on molecular glues, covalent fragments, transient binding pockets and more. This report presents a summary of the key lectures and activities at the event.In this study, a solvent-based de-emulsification dispersive liquid-liquid microextraction method coupled with surface plasmon resonance of silver nanoparticles was developed for determination of trace levels of methionine. The stable and dispersed silver nanoparticles were synthesized by applying ascorbic acid as reducer and Stenotrophomonas sp. bacterial suspension as bio-stabilizer and then preconcentrated in organic phase according to a facile dispersive liquid-liquid microextraction procedure based on 1-octanol as extraction solvent, methyltrioctylammonium chloride (aliquat 336) as disperser and acetone as de-emulsifier. The presence of methionine influenced the intensity of plasmon resonance absorbance of silver nanoparticles, which was employed as a colorimetric probe for the determination of this amino acid. Under the optimal conditions, the linear analytical range of 5.6 to 234.5 nmol/L and a detection limit of 3.4 nmol/L were achieved for methionine. The relative standard deviation for seven replicate measurements of 33.5 and 107.2 nmol/L of methionine was 4.3 and 2.1%, respectively. The suggested method was successfully applied for the determination of methionine in biological samples.Morphologically and dimensionally controlled growth of Ag nanocrystals has long been plagued by surfactants or capping agents that complicate downstream applications, unstable Ag salts that impaired the reproducibility, and multistep seed injection that is troublesome and time-consuming. Here, we report a one-pot electro-chemical method to fast (∼2 min) produce Ag nanoparticles from commercial bulk Ag materials in a nitric acid solution, eliminating any need for surfactants or capping agents. Their size can be easily manipulated in an unprecedentedly wide range from 35 to 660 nm. Furthermore, the Ag nanoparticles are directly grown on the Ag substrate, highly desirable for promising applications such as catalysis and plasmonics. The mechanistic studies reveal that the concentration of Ag+ in the diffusion layer nearby the surface, controlled by the magnitude and duration of voltage, is critical in governing the nanoparticle formation ( less then 1.3 mM) and its dimensional adjustability.Chronic mesh infection with sinus formation is usually amenable to open method with dye. Recently, intraoperative real-time fluorescent imaging has been applied to various organs but not to mesh infection. A 72-year-old man with the history of two times removal of infected mesh was referred for groin bulge with purulent discharge. Laparoscopy assisted infected mesh removal was undertaken using intraoperative real-time fluorescent imaging with indocyanine green injection via the sinus orifice. We experienced the first case of the infected mesh with chronic sinus formation treated by the help of intraoperative indocyanine green fluorescent. This method is simple and easy to apply for laparoscopic assisted removal of chronic mesh infection with sinus.Negative-pressure wound therapy (NPWT) is often used for skin graft site dressing, and several studies have reported that its use improves skin graft failure in the forearm flap donor site. The present systematic review aimed to evaluate the efficacy of NPWT with skin graft for donor-site closure in radial forearm free flap (RFFF) reconstruction. A systematic search in PubMed, Web of Science, and Cochrane Library databases was conducted. The search terms used for PubMed were ([radial forearm]) AND ([donor]) AND ([negative pressure or vacuum]). This review was registered in the International Prospective Register of Systematic Reviews and performed in accordance with the preferred reporting items for systematic reviews and meta-analyses statement. Three prospective randomised controlled trials and three retrospective comparative studies were included. Compared with conventional bolster dressing, the use of NPWT dressing did not lead to significant improvements in partial skin graft loss, tendon exposure, and other complications.