Pageholdt8467
Biofilm infections present a serious problem because antibacterial drugs are not effective against mature biofilms or biofilms formed by drug-resistant bacteria. To address this issue, we developed a drug delivery system based on metal-decorated polymeric particles. Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) is an amphiphilic polymer used in biomedical formulations, while silver nanoparticles are widely acknowledged to have high antibacterial activity. We prepared silver-decorated Soluplus® micelle nanoparticles with high antibacterial activity using the emulsion solvent diffusion method. Decoration of Soluplus® micelles with silver nanoparticles was found to increase their antibacterial activity. Scanning transmission electron microscopy-cathodoluminescence (STEM-CL) spectroscopy allows imaging of the spatial distribution of labeled targets and the chemical identification of materials. However, STEM-CL spectroscopy of fragile polymer materials is challenging. We optimized the STEM-CL spectroscopy technique to determine the distribution of silver nanoparticles in Soluplus® micelles. Additionally, the surface plasmon properties of the silver nanoparticles were successfully characterized without deactivation. The developed silver-decorated Soluplus® nanoparticles were effective against biofilm infections and have the potential to be applied for other biofilm-related diseases. Additionally, the optimized STEM-CL spectroscopy technique is expected to contribute to the analysis and imaging of fragile polymer materials, as well as other soft materials such as cells and tissues.We present results to show that a commercially available polypropylene suture filament (Ethicon Prolene), following annealing and tensile creep can, after creep load removal, release viscoelastically stored energy over a period of several weeks. Specifically, over 0.1-1000 h, the suture undergoes a time-dependent contraction of ~4% and, following a short recovery time (~3 min) to a fixed strain, produces a progressively increasing recovery force of ~0.1-1 N. We suggest that this time-dependent energy release may facilitate wound healing by the action of viscoelastically induced mechanotransduction (VIM). Moreover, our recent (published) findings have led to evidence of reduced hydrophobicity from viscoelastically recovering polymeric filaments and speculation that this may emanate from the long-term release of electric charges. Thus, we propose that the latter may enhance the VIM mechanism. In this paper, we report on the direct detection of these charges and the first findings from an investigation involving the presence of cell cultures on Prolene samples that are (i) viscoelastically recovering, (ii) annealed only and (iii) in as-received condition. From (i), the results demonstrate a significant increase in cell motility, with migration towards the suture, compared to (ii) and (iii). This suggests greater stimulation of the wound healing process, an effect which is expected to continue for the duration of the viscoelastic recovery period.The development of tissue-engineered biodegradable artificial tissue substitutes with extracellular matrix-mimicking properties that govern the interaction between the material and biological environment is of great interest in wound-healing applications. In the present study, novel bilayer nanofibrous scaffolds composed of fish collagen (FC) and poly(ε-caprolactone) (PCL) were fabricated using electrospinning, with the covalent attachment of chitooligosaccharides (COS) via carbodiimide chemistry. The architecture and fiber diameter of the non-cross-linked nanofibrous scaffolds remained consistent irrespective of the polymer ratio under different electrospinning conditions, but the fiber diameter changed after cross-linking in association with the FC content. Fourier-transform infrared spectroscopy analysis indicated that the blend of biomaterials was homogenous, with an increase in COS levels with increasing FC content in the nanofibrous scaffolds. Based on cytocompatibility analysis (i.e., the cellular response to the nanofibrous scaffolds and their interaction), the nanofibrous scaffolds with high FC content were functionally active in response to normal human dermal fibroblast‑neonatal (NHDF-neo) and HaCaT keratinocyte cells, leading to the generation of a very effective tissue-engineered implant for full-thickness wound-healing applications. In addition to these empirical results, an assessment of the hydrophilicity, swelling, and mechanical integrity of the proposed COS-containing FC-rich FC/PCL (FCP) nanofibrous scaffolds confirmed that they have significant potential for use as tissue-engineered skin implants for rapid skin regeneration.Non-small cell lung cancer (NSCLC), pre-dominant subtype of lung cancer, is a global disorder affecting millions worldwide. One of the early treatments for NSCLC was use of a first-generation tyrosine kinase inhibitor, Erlotinib (Erlo). However, chronic exposure to Erlo led to development of acquired drug resistance (ADR) in NSCLC, limiting the clinical use of Erlo. A potential approach to overcome development of ADR is a multi-drug therapy. It has been previously reported that Erlo and Quinacrine (QA), an anti-malarial drug, can work synergistically to inhibit tumor progression in NSCLC. PF-07321332 price However, the combination failed at clinical stages, citing lack of efficacy. In this study, an effort has been made to improve the efficacy of Erlo-QA combination via development of nanoformulations, known to enhance therapeutic efficacy of potent chemotherapies. Synergy between Erlo and QA was measured via estimating the combination indices (CI). It was seen that established combination of nanoformulations (CI 0.25) had better synergy than plain drug solutions (CI 0.85) in combination. Following extensive in-vitro testing, data were simulated in biologically relevant 3D tumor models. Two tumor models were developed for extensive in-vitro testing, 3D-Spheroids grown in ultra-low attachment culture plates for efficacy evaluation and a 5D-spheroid model in 5D-sphericalplate with capability of growing 750 spheroids/well for protein expression analysis. Extensive studies on these models revealed that combination of Erlo and QA nanoformulations overall had a better effect in terms of synergy enhancement as compared to plain drug combination. Further, effect of combinatorial therapy on molecular markers was evaluated on 5D-Sphericalplate leading to similar effects on synergy enhancement. Results from present study suggests that combination of nanoformulations can improve the synergy between Erlo and QA while reducing the overall therapeutic dose.