Danielsgallegos2614
Computed tomography is the most commonly used imaging modality to detect and stage pancreatic cancer. Previous advances in pancreatic cancer imaging have focused on optimizing image acquisition parameters and reporting standards. However, current state-of-the-art imaging approaches still misdiagnose some potentially curable pancreatic cancers and do not provide prognostic information or inform optimal management strategies beyond stage. Several recent developments in pancreatic cancer imaging, including artificial intelligence and advanced visualization techniques, are rapidly changing the field. The purpose of this article is to review how these recent advances have the potential to revolutionize pancreatic cancer imaging.Diagnosing prostate cancer through standard transrectal ultrasound (TRUS)-guided biopsy is challenging because of the sensitivity and specificity limitations of B-mode imaging. We used a linear support vector machine (SVM) to combine standard TRUS imaging data with acoustic radiation force impulse (ARFI) imaging data, shear wave elasticity imaging (SWEI) data and quantitative ultrasound (QUS) midband fit data to enhance lesion contrast into a synthesized multiparametric ultrasound volume. This SVM was trained and validated using a subset of 20 patients and tested on a second subset of 10 patients. Multiparametric US led to a statistically significant improvements in contrast, contrast-to-noise ratio (CNR) and generalized CNR (gCNR) when compared with standard TRUS B-mode and SWEI; in contrast and CNR when compared with MF; and in CNR when compared with ARFI. ARFI, MF and SWEI also outperformed TRUS B-mode in contrast, with MF outperforming B-mode in CNR and gCNR as well. ARFI, although only yielding statistically significant differences in contrast compared with TRUS B-mode, captured critical qualitative features for lesion identification. Multiparametric US enhanced lesion visibility metrics and is a promising technique for targeted TRUS-guided prostate biopsy in the future.Volume assessment of abdominal aortic aneurysms (AAAs) using 3-D ultrasound (US) is an innovative technique reporting good agreement with computed tomography angiography. One major limitation of the current 3-D US technique is a limited field of view, allowing full AAA acquisition in only 60% of patients. This study presents two new US acquisition protocols using magnetic field tracking, providing an "extended field of view" (XFoV-2-D and XFoV-3-D) with the aim of including both the aortic bifurcation and neck for full-volume assessment, and compares these methods with the current standard 3-D US protocol and with computed tomography angiography. A total of 20 AAA patients were included and underwent the current standard 3-D US protocol and the two novel 3-D US "extended field of view" protocols. Four patients were excluded from further analysis because of low image quality, leaving 16 patients eligible for analysis. Full AAA volume was achieved in 8 patients (50%) using the standard 3-D US protocol, in 11 patients (69%) with the XFoV-2-D protocol and in 13 patients (81%) with the XFoV-3-D protocol. In conclusion, this article describes two new and feasible US protocols applicable for full-AAA-volume estimation in most patients and should initiate further research into the added value of full volume in AAA surveillance.Longitudinal monitoring of stem cells in the spinal cord could unveil critical information needed to understand regenerative processes, thereby expediting therapy development and translation. We introduce a post-operative trimodal imaging approach to monitor stem cells in the spinal cord over time. A key aspect of the approach is to label the stem cells with Prussian blue nanocubes (PBNCs), which simultaneously possess optical and magnetic properties for ultrasound-guided photoacoustic (US/PA) and magnetic resonance imaging (MRI) contrast. PBNC-Labeled stem cells were injected into the spinal cord of immunodeficient rats and tracked with US/PA imaging and MRI up to 14 d post-injection. Good agreement was observed between imaging modalities in vivo. Our results suggest that further development of the US/PA/MR imaging approach may create a powerful tool to aid development of regenerative therapies of the spinal cord, and the non-invasive imaging approach can ultimately be deployed in intra- and post-operative environments.The aim of the prospective study described here was to compare the tolerability, safety and diagnostic value of contrast-enhanced ultrasound-guided transoral core needle biopsy (CEUS-CNB) with that of conventional US-guided transoral CNB (US-CNB) and standard incisional biopsy in patients with oral masses. Between June 2017 and November 2019, consecutive patients with oral masses referred for biopsy were randomly assigned to undergo incisional biopsy, US-CNB or CEUS-CNB. Procedure time, intra‑operative blood loss volume, diagnostic performance and pain level before and after the procedure assessed by visual analogue score (VAS) were recorded and compared among the three procedures. Finally, 238 patients with pathology confirmation were analyzed 80 patients underwent incisional biopsy, 78 patients US-CNB and 80 patients CEUS-CNB. In this study, no significant difference was found in biopsy time between CEUS-CNB, US-CNB and incisional biopsy (75 ± 11 s vs. 73.6 ± 12 s vs. 77 ± 13 s, p = 0.24). CEUS-CNB achieved the highest sensitivity (CEUS-CNB 100%, US-CNB 88.5%, incisional biopsy 84.3%), negative predictive value (CEUS-CNB 100%, US-CNB 81.3%, incisional biopsy 78.4%) and accuracy (CEUS-CNB 100%, US-CNB 92.3%, incisional biopsy 90%). The VAS score for incision biopsy was higher (p = 0.01) and the amount of bleeding was larger (p less then 0.001), yet there was no significant difference between CEUS-CNB and US-CNB. Our results indicate CEUS-guided transoral CNB is an efficient, safe and well-tolerated procedure, with biopsy time comparable to and diagnostic performance better than those of conventional US-guided transoral CNB and incisional biopsy.We report shear wave phase and group velocity, dispersion and attenuation in oil-in-gelatin viscoelastic phantoms and in vivo liver data. Moreover, we measured the power law coefficient from each dispersion curve and used it, together with the shear wave velocity, to calculate an approximate value for attenuation that agrees with independent attenuation measurements. Results in phantoms exhibit good agreement for all parameters with respect to independent mechanical measurements. For in vivo data, the livers of 20 patients were scanned. Results were compared with pathology scores obtained from liver biopsies. Across these cases, increases in shear wave dispersion and attenuation were related to increased steatosis score. Sitravatinib molecular weight It was found that shear wave dispersion and attenuation are experimentally linked, consistent with simple predictions based on the rheology of tissues, and can be used individually or jointly to assess tissue viscosity. Thus, this study indicates the possible utility of using shear wave dispersion and attenuation to non-invasively and quantitatively assess steatosis.