Roachwolf9994

Z Iurium Wiki

Verze z 13. 11. 2024, 03:40, kterou vytvořil Roachwolf9994 (diskuse | příspěvky) (Založena nová stránka s textem „Supra-amphiphiles constituted of noncovalent bonds have emerged as attractive systems for fabrication of stimuli-responsive self-assembled nanostructures.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Supra-amphiphiles constituted of noncovalent bonds have emerged as attractive systems for fabrication of stimuli-responsive self-assembled nanostructures. A unique supramolecular strategy utilizing halogen (X)-bonding interaction has been demonstrated for constructing emissive supra-π-amphiphiles in water from a hydrophobic pyridyl functionalized naphthalene monoimide (NMI-Py) based X-bond acceptor and hydrophilic iodotetrafluorophenyl functionalized polyethylene glycol (PEG-I) or triethylene glycol (TEG-I) based X-bond donors, while their luminescent higher ordered assemblies were governed by orthogonal dipole-dipole interaction and π-stacking of the NMI-Py fluorophore as probed by SCXRD and DFT calculations. Control molecules lacking iodotetrafluorophenyl moiety at the polyethylene glycol chain end failed to create any defined morphology from the NMI-Py, suggesting X-bonding is prerequisite for the nanostructure formation. Variation in the chain length of the X-bond donors leads to different morphologies (fiber vs vesicle) for PEG-I and TEG-I. Acid triggered denaturing of the X-bonds caused pH responsive disassembly of the thermally robust nanostructures. This strategy paves the way for facile fabrication of structurally diverse smart and adaptive luminescent functional materials with tunable morphology.Alumina-functionalized ordered mesoporous silica SBA-15 particles have been proposed to stabilize Pickering emulsions. Functionalization of SBA-15 particles have been performed by depositing alumina using a two-step synthesis (first, silica condensation, followed by alumina precipitation). Three different Al to Si ratios have been prepared. Bcl-2 protein family The calcined materials have been characterized by TEM, SEM, XRD, N2 physisorption, and zeta potential, in order to determine key physicochemical properties, and the alumina localization. The emulsifying and stabilizing properties of the calcined particles have been evaluated for water/toluene-based Pickering emulsions.In this work, we investigate a few density functional theory based reactivity indices of chemistry, with a view to arrive at an inter-comparison and also consider their applications toward the problems of chemical significance. In particular, we propose to use the concepts of fugality and atom-atom polarizability to study the acidic strength of para-substituted benzoic acid derivatives. The nature of the variations and trends in the correlation of reactivity parameters and pKa values, is shown to provide an insight into the applicability of these concepts to such reactions.Liquid-infused surfaces (LISs) exhibit unique properties that make them ideal candidates for a wide range of applications, from antifouling and anti-icing coatings to self-healing surfaces and controlled wetting. However, when exposed to realistic environmental conditions, LISs tend to age and progressively lose their desirable properties, potentially compromising their application. The associated ageing mechanisms are still poorly understood, and results reflecting real-life applications are scarce. Here, we track the ageing of a model LIS composed of glass surfaces functionalized with hydrophobic nanoparticles and infused with silicone oil. The LISs are fully submerged in aqueous solutions and exposed to acoustic pressure waves for set time intervals. The ageing is monitored by periodic measurements of the LIS's wetting properties. We also track the changes to the LIS's nanoscale structure. We find that the LISs rapidly lose their slippery properties because of a combination of oil loss, smoothing of the nanoporous functional layer, and substrate degradation when directly exposed to the solution. The oil loss is consistent with water microdroplets entering the oil layer and displacing oil away from the surface. These mechanisms are general and could play a role in the ageing of most LISs.The addition of vinylic radicals to acetylene is an important step contributing to the formation of polycyclic aromatic hydrocarbons in combustion. The overall reaction 3C2H2 → C6H6 could result in large benzene yields, but without accurate rate parameters validated by experiment, the extent of aromatic ring formation from this pathway is uncertain. The addition of vinyl radicals to acetylene was investigated using time-resolved photoionization time-of-flight mass spectrometry at 500 and 700 K and 5-50 Torr. The formation of C6H6 was observed at all conditions, attributed to sequential addition to acetylene followed by cyclization. Vinylacetylene (C4H4) was observed with increasing yield from 500 to 700 K, attributed to the β-scission of the thermalized 1,3-butadien-1-yl radical and the chemically activated reaction C2H3 + C2H2 → C4H4 + H. The measured kinetics and product distributions are consistent with a kinetic model constructed using pressure- and temperature-dependent reaction rate coefficients computed from previously reported ab initio calculations. The experiments provide direct measurements of the hypothesized C4H5 intermediates and validate predictions of pressure-dependent addition reactions of vinylic radicals to C2H2, which are thought to play a key role in soot formation.Here we describe an asymmetric [3,3]-sigmatropic rearrangement of aryl iodanes that enables the enantioselective α-arylation of chiral 2-oxazolines, thereby producing valuable chiral α-aryl carbonyl compounds. The success of this protocol hinges on the selective assembly of aryl iodanes with 2-oxazolines and the smooth deprotonation of the in situ-generated iodonium-imine species. The nearly neutral and mild conditions of the reaction allow it to tolerate a wide variety of functional groups. Moreover, the remaining iodine atom in the products not only provides a versatile platform for further elaboration of such molecules but also supplies the asymmetric hypervalent iodine chemistry with a new class of chiral scaffolds.Reduced graphene oxide (rGO) attracts great popularity as an alternative to pristine graphene because of the facile synthesis process of its precursor, graphene oxide (GO). Electrical conduction of GO is tunable, subject to the extent of reduction of oxygen functional groups in it. This work for the first time demonstrates rapid reduction of GO using spark at ambient conditions. A stream of spark generated by applying high electric potential across two electrodes, when passed through a film of GO deposited on a porous substrate, reduces it into rGO. Upon sparking, the electrical resistance of the GO film drops down by an order of six within a second, making the reduction process instantaneous. X-ray photoelectron spectroscopy and Raman spectra of spark-reduced graphene oxide (SrGO) films revealed a high C/O ratio with an increase in the domain of sp2-hybridized carbon. The electromechanical properties of SrGO were practically examined by testing it as a flex sensor by incorporating its films with commercially available gloves.

Autoři článku: Roachwolf9994 (Chavez Snedker)