Frederickgarrison5981
Anticancer target prediction and molecular docking studies revealed the inhibitory activity of a few A. fragrantissima flower dichloromethane extract-derived metabolites against carbonic anhydrase IX, an enzyme reported for its anti-apoptotic properties. In conclusion, these findings suggest promising therapeutic values of the A. fragrantissima flower dichloromethane extract against TNBC development.Due to the obstruction and heterogeneity of the blood-brain barrier, the clinical treatment of glioma has been extremely difficult. Isoliquiritigenin (ISL) exhibits antitumor effects, but its low solubility and bioavailability limit its application potential. Herein, we established a nanoscale hybrid membrane-derived system composed of erythrocytes and tumor cells. By encapsulating ISL in hybrid membrane nanoparticles, ISL is expected to be enhanced for the targeting and long-circulation in gliomas therapy. We fused erythrocytes with human glioma cells U251 and extracted the fusion membrane via hypotension, termed as hybrid membrane (HM). HM-camouflaged ISL nanoparticles (ISL@HM NPs) were prepared and featured with FT-IR, SEM, TEM, and DLS particle analysis. As the results concluded, the ISL active pharmaceutical ingredients (APIs) were successfully encapsulated with HM membranes, and the NPs loading efficiency was 38.9 ± 2.99% under maximum entrapment efficiency. By comparing the IC50 of free ISL and NPs, we verified that the solubility and antitumor effect of NPs was markedly enhanced. We also investigated the mechanism of the antitumor effect of ISL@HM NPs, which revealed a marked inhibition of tumor cell proliferation and promotion of senescence and apoptosis of tumor cells of the formulation. In addition, the FSC and WB results examined the effects of different concentrations of ISL@HM NPs on tumor cell disruption and apoptotic protein expression. Finally, it can be concluded that hybridized membrane-derived nanoparticles could prominently increase the solubility of insoluble materials (as ISL), and also enhance its targeting and antitumor effect.Direct growth inhibition of infectious organisms coupled with immunomodulation to counteract the immunosuppressive environment might be a beneficial therapeutic approach. Herein, a library of sulfuretin analogs were developed with potential capabilities to inhibit production of the immunosuppressive PGE2 and elicit direct growth inhibition against Leishmania donovani; the major causative agent of the fatal visceral leishmaniasis. Amongst explored library members bearing diverse methoxy and/or hydroxy substitution patterns at rings B and A, analog 1i retaining the C6-hydroxy moiety at ring-A, but possessing methoxy moieties in place of the polar dihydroxy moieties of sulfuretin ring-B, as well as analog 1q retaining the sulfuretin's polar dihydroxy moieties at ring-B, but incorporating a C6-methoxy moiety instead of the C6-hydroxy moiety at ring-A, were the most promising hit compounds. Cytotoxicity evaluation suggested that analog 1i possesses a safety profile inducing the death of the parasite rather than host cells. In silico simulation provided insights into their possible binding with Leishmania donovani fumarate reductase. The current investigation presents sulfuretin analogs 1i and 1q as potential hit compounds for further development of multifunctional therapeutic agents against visceral leishmaniasis.We aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using the endophytic fungal extract of Aspergillus niger. The prepared ZnO NPs were characterized, and their in vitro and in vivo antibacterial activity was investigated. Isolated endophytic fungus identification was carried out using 18S rRNA. A. niger endophytic fungal extract was employed for the green synthesis of ZnO NPs. The in vitro antibacterial activity of the prepared ZnO NPs was elucidated against Staphylococcus aureus using the broth microdilution method and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the in vivo antibacterial activity was elucidated using a systemic infection model in mice. The biosynthesized ZnO NPs showed a maximum optical density at 380 nm with characteristic peaks on the Fourier-transform infrared spectrum. The X-ray diffraction pattern was highly matched with a standard platform of zinc oxide crystals. Energy-dispersive X-ray analysis confirmed that the main composition of nanoparticles was zinc and oxygen atoms. Scanning and transmission electron microscopies showed spherical geometry with a smooth surface. Zeta potential measurements (26.6 ± 0.56 mV) verified the adequate stability of ZnO NPs. Minimum inhibitory concentrations of ZnO NPs against S. aureus isolates ranged from 8 to 128 µg/mL. Additionally, ZnO NPs revealed antibiofilm activity, resulting in the downregulation of the tested biofilm genes in 29.17% of S. aureus isolates. Regarding the in vivo experiment, ZnO NPs reduced congestion and fibrosis in liver and spleen tissues. They also improved liver function, increased the survival rate, and significantly decreased inflammatory markers (p < 0.05). ZnO NPs synthesized by A. niger endophytic fungus revealed a promising in vivo and in vitro antibacterial action against S. aureus isolates.A high-fat choline diet (HFCD)-induced atherosclerosis model in ApoE-/- mice was established to explore the anti-atherosclerotic effects of gypenoside XLIX (GPE). It was found that HFCD-induced atherosclerotic index such as dyslipidemia, atherosclerotic plaque, inflammation, and gut microbiota dysfunction could be reduced by GPE treatment. GPE treatment could decrease Verrucomicrobia, Proteobacteria, and Actinobacteria abundance, and increase Firmicutes and Bacteroidetes population. Moreover, the Firmicutes/Bacteroidetes ratio increased significantly after treatment with GPE. After treatment with GPE, the relative abundance of trimethylamine-producing intestinal bacteria Clostridioides and Desulfovibrionaceae decreased while butyrate-producing bacteria such as Eubacterium, Roseburia, Bifidobacterium, Lactobacillus, and Prevotella increased significantly. The GPE group demonstrated higher SCFAs concentrations in the fecal sample, such as Acetic Acid, Propionic Acid, and Butyric Acid. Further pathway analysis showed that 29 metabolic pathways were appreciably disturbed during GPE treatment, including citrate cycle (TCA cycle); galactose and glycero-lipid-metabolism biosynthesis of unsaturated fatty acids, fatty acid biosynthesis. PR-171 concentration This study suggests that the anti-atherosclerotic effect of GPE is related to the substantial changes in intestinal microbiota and anti-inflammatory activity.Clinical observations are highly inconsistent with the use of the antidiabetic rosiglitazone regarding its associated increased risk of myocardial infarction. This may be due to its hidden cardiotoxic properties that have only become evident during post-marketing studies. Therefore, we aimed to investigate the hidden cardiotoxicity of rosiglitazone in ischemia/reperfusion (I/R) injury models. Rats were treated orally with either 0.8 mg/kg/day rosiglitazone or vehicle for 28 days and subjected to I/R with or without cardioprotective ischemic preconditioning (IPC). Rosiglitazone did not affect mortality, arrhythmia score, or infarct size during I/R. However, rosiglitazone abolished the antiarrhythmic effects of IPC. To investigate the direct effect of rosiglitazone on cardiomyocytes, we utilized adult rat cardiomyocytes (ARCMs), AC16, and differentiated AC16 (diffAC16) human cardiac cell lines. These were subjected to simulated I/R in the presence of rosiglitazone. Rosiglitazone improved cell survival of ARCMs at 0.3 μM. At 0.1 and 0.3 μM, rosiglitazone improved cell survival of AC16s but not that of diffAC16s. This is the first demonstration that chronic administration of rosiglitazone does not result in major hidden cardiotoxic effects in myocardial I/R injury models. However, the inhibition of the antiarrhythmic effects of IPC may have some clinical relevance that needs to be further explored.Glucoraphanin (GRA) is a natural compound that has shown beneficial effects in chronic diseases and in central nervous system disorders. Moreover, GRA displayed antidepressant activity in preclinical models. We have previously demonstrated that a single intracerebroventricular administration of soluble amyloid-beta 1-42 (sAβ 1-42) in rat evokes a depressive-like phenotype by increasing immobility frequency in the forced swimming test (FST). The aim of this work was to investigate the effect of GRA in naïve and in sAβ-1-42-treated rats by using the FST. Behavioural analyses were accompanied by neurochemical and biochemical measurements in the prefrontal cortex (PFC), such as serotonin (5-HT), noradrenaline (NA), kynurenine (KYN), tryptophan (TRP), reactive oxygen species (ROS) and the transcription nuclear factor kappa B (NF-kB) levels. We reported that GRA administration in naïve rats at the dose of 50 mg/kg reduced the immobility frequency in the FST and increased 5-HT and NA levels in the PFC compared to controls. At the same dose, GRA reverted depressive-like effects of sAβ 1-42 administration, restored the 5-HT levels and reduced NF-kB, KYN and ROS levels in PFC. In conclusion, GRA rapidly reverting depressive-like behaviour, together with biochemical and neurochemical alterations, might represent a safe and natural candidate for the treatment of depression.Bacteriophage-derived dsRNA, known as Larifan, is a nationally well-known broad-spectrum antiviral medication. This study aimed to ascertain the antiviral activity of Larifan against the novel SARS-CoV-2 virus. Larifan's effect against SARS-CoV-2 in vitro was measured in human lung adenocarcinoma (Calu3) and primary human small airway epithelial cells (HSAEC), and in vivo in the SARS-CoV-2 infection model in golden Syrian hamsters. Larifan inhibited SARS-CoV-2 replication both in vitro and in vivo. Viral RNA copy numbers and titer of infectious virus in the supernatant of Calu3 cells dropped significantly p = 0.0296 and p = 0.0286, respectively. A reduction in viral RNA copy number was also observed in HSAEC, especially when Larifan was added before infection (p = 0.0218). Larifan markedly reduced virus numbers in infected hamsters' lungs post-infection, with a more pronounced effect after intranasal administration (p = 0.0032). The administration of Larifan also reduced the amount of infections virus titer in the lungs (p = 0.0039). Improvements in the infection-induced pathological lesion severity in the lungs of animals treated with Larifan were also demonstrated. The inhibition of SARS-CoV-2 replication in vitro and the reduction in the viral load in the lungs of infected hamsters treated with Larifan alongside the improved lung histopathology suggests a potential use of Larifan in also controlling the COVID-19 disease in humans.Autophagy has been implicated in the regulation of neuroinflammation and neurodegenerative disorders. Licochalcone B (LCB), a chalcone from Glycyrrhiza inflata, has been reported to have anti-cancer, anti-oxidation and anti-β-amyloid fibrillation effects; however, its effect in autophagy remain un-investigated. In the current study, the potential neuro-protective role of LCB in terms of its anti-oxidative, anti-apoptotic, and autophagic properties upon oxidative stress-induced damage in neuronal cells was investigated. With the production of reactive oxygen species (ROS) as a hallmark of neuroinflammation and neurodegeneration, hydrogen peroxide (H2O2) was adopted to stimulate ROS-induced cell apoptosis in PC-12 cells. Our findings revealed that LCB reduced cell cytotoxicity and apoptosis of PC-12 cells upon H2O2-stimulation. Furthermore, LCB increased the level of the apoptosis-associated proteins caspase-3 and cleaved caspase-3 in H2O2-induced cells. LCB effectively attenuated the level of oxidative stress markers such as MDA, SOD, and ROS in H2O2-induced cells.