Dentonfreedman8842

Z Iurium Wiki

Verze z 12. 11. 2024, 23:43, kterou vytvořil Dentonfreedman8842 (diskuse | příspěvky) (Založena nová stránka s textem „The 6WT demonstrated a persistent OFI (487 m vs. 488 m). This patient was considered a nonresponder and underwent surgical treatment. This case series illu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The 6WT demonstrated a persistent OFI (487 m vs. 488 m). This patient was considered a nonresponder and underwent surgical treatment. This case series illustrates the feasibility of the smartphone-based 6WT as a tool to assess OFI in patients undergoing ESI for lumbar DDD.OBJECTIVE Lumbar fusion with implantation of interbody cage is a common procedure for treatment of lumbar degenerative disease. This study aims to compare the fusion and subsidence rates of titanium (Ti) versus polyetheretherketone (PEEK) interbody cages after posterior lumbar interbody fusion and investigate the effect of clinical and radiological outcomes following fusion on patient-reported outcomes. METHODS A systematic search strategy of 4 electronic databases (MEDLINE, Embase, Web of Science, and Cochrane) was conducted using different MeSH (medical subject headings) terms until January 2020. Pooled odds ratios (ORs) with 95% confidence intervals (CI) were calculated using fixed and random-effect models based upon the heterogeneity (I2) to estimate the association between interbody cages and the measured outcomes. RESULTS A total of 1,094 patients from 11 studies were reviewed. The final analysis included 421 patients (38.5%) who had lumbar surgery using a Ti and/or a Ti-coated interbody cage and 673 paOBJECTIVE The purpose of this study was to determine the efficacy and feasibility of 5th generation wireless systems (5G) telerobotic spinal surgery in our first 12 cases. METHODS A total of 12 patients (5 males, 7 females; age, 23-71 years) with spinal disorders (4 thoracolumbar fractures, 6 lumbar spondylolisthesis, 2 lumbar stenosis) were treated with 5G telerobotic spinal surgery. Sixty-two pedicle screws were implanted. RESULTS All patients had substantial relief from their symptoms. Screw placements were classified using Gertzbein-Robbins criteria. There were 59 grade A, 3 grade B. Mean operation time was 142.5 ± 46.7 minutes. Mean guiding wire insertion time was 41.3 ± 9.8 minutes. The deviation between the planned and actual positions was 0.76 ± 0.49 mm. No intraoperative adverse event was found. CONCLUSION 5G remote robot-assisted spinal surgery is accurate and reliable. We conclude that 5G telerobotic spinal surgery is both efficacious and feasible for the management of spinal diseases with safety.Instrumented spine procedures have been performed for decades to treat a wide variety of spinal disorders. New technologies have been employed to obtain a high degree of precision, to minimize risks of damage to neurovascular structures and to diminish harmful exposure of patients and the operative team to ionizing radiations. Robotic spine surgery comprehends 3 major categories telesurgical robotic systems, robotic-assisted navigation (RAN) and virtual augmented reality (AR) systems, including AR and virtual reality. Telesurgical systems encompass devices that can be operated from a remote command station, allowing to perform surgery via instruments being manipulated by the robot. On the other hand, RAN technologies are characterized by the robotic guidance of surgeon-operated instruments based on real-time imaging. Virtual AR systems are able to show images directly on special visors and screens allowing the surgeon to visualize information about the patient and the procedure (i.e., anatomical landmarks, screw direction and inclination, distance from neurological and vascular structures etc.). The aim of this review is to focus on the current state of the art of robotics and AR in spine surgery and perspectives of these emerging technologies that hold promises for future applications.OBJECTIVE Spinal fusion surgery is a common treatment modality for various pathologic conditions of the spine. The bone morphogenetic protein 2 (BMP2) analogue L51P acts as a general inhibitor of BMP antagonists, whereas it shows a weak affinity for BMP type I receptor. It is suggested that L51P applied in bone disorders might prevent side effects of highly concentrated BMP dosage applications in the order of milligrams. The objective of this study was to investigate the effects of L51P and BMP2 on intervertebral disc cells (IVDCs), i.e. on nucleus pulposus cells, on annulus fibrosus cells (AFCs), and on cartilaginous endplate cells (CEPCs), respectively, in 3-dimensional (3D) culture. METHODS Low-passage primary IVDCs were cultured in 3D alginate bead culture and exposed to 100-ng/mL BMP2 and/or L51P for 21 days. Here, we analyzed glycosaminoglycan (GAG) and DNA content and further performed gene expression analysis for major matrix genes. RESULTS AFCs and cartilaginous CEPCs stimulated with each 100-ng/mL L51P and BMP2, showed a significant upregulation in GAG (AFCs p = 0.00347 and CEPCs p = 0.0115) and DNA production (AFCs p = 0.0182 and CEPCs p = 0.0179) compared to control. CONCLUSION These results allow first insights into the behavior of IVDCs upon L51P stimulation.OBJECTIVE Rabbit annulus fibrosus (AF) cells were exposed to isolated or combined mechanical and inflammatory stress to examine the expression of neuropeptide Y (NPY). This study aims to explore the ability of AF cells to produce NPY in response to mechanical and inflammatory stress. selleck METHODS Lumbar AF cells of 6- to 8-month-old female New Zealand white rabbits were harvested and exposed to combinations of inflammatory (interleukin-1β) and mechanical (6% or 18%) tensile stress using the Flexcell System. NPY concentrations were measured in the media via enzyme-linked immunosorbent assay. The presence of NPY receptor-type 1 (NPY-1R) in AF cells of rabbit intervertebral discs was also analyzed via immunohistochemistry and immunofluorescence. RESULTS Exposure to inflammatory stimuli showed a significant increase in the amount of NPY expression compared to control AF cells. Mechanical strain alone did not result in a significant difference in NPY expression. While combined inflammatory and mechanical stress did not demonstrate an increase in NPY expression at low (6%) levels of strain, at 18% strain, there was a large-though not statistically significant-increase in NPY expression under conditions of inflammatory stress. Lastly, immunofluorescence and immunohistochemistry of AF cells and tissue, respectively, demonstrated the presence of NPY-1R. CONCLUSION These findings demonstrate that rabbit AF cells are capable of expressing NPY, and expression is enhanced in response to inflammatory and mechanical stress. Because both inflammatory and mechanical stress contribute to intervertebral disc degeneration (IDD), this observation raises the potential of a mechanistic link between low back pain and IDD.

Autoři článku: Dentonfreedman8842 (Have Vistisen)