Collierfletcher3450

Z Iurium Wiki

Verze z 12. 11. 2024, 19:50, kterou vytvořil Collierfletcher3450 (diskuse | příspěvky) (Založena nová stránka s textem „51 kWh (g TOC)-1. On the contrary, the maximum TOC removal efficiency for Ti/RuO2-IrO2 was 63.1% at 40 mA cm-2 in NaCl electrolyte while the average MCE wa…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

51 kWh (g TOC)-1. On the contrary, the maximum TOC removal efficiency for Ti/RuO2-IrO2 was 63.1% at 40 mA cm-2 in NaCl electrolyte while the average MCE was 1.6% and the average ECTOC was 1.95 kWh (g TOC)-1. The presence of Fe2+ in Na2SO4 electrolyte would decrease the TOC removal efficiency except at low current density (20 mA cm-2) for Ti/RuO2-SnO2. These results indicated that Ti/RuO2-SnO2 and Ti/RuO2-IrO2 anode were suitable in Na2SO4 and NaCl electrolyte, respectively, while the presence of Fe2+ would inhibit aniline degradation.A newly emerged alum sludge-based hybrid constructed wetland-microbial fuel cells (CW-MFCs), i.e. vertical upflow CW coupled MFC as 1st stage and horizontal subsurface flow CW coupled MFC as 2nd stage (VFCW-MFC + HSSFCW-MFC), was firstly developed for swine wastewater treatment and electricity generation. Swine wastewater and multi-set air-cathodes were applied to investigate the pollutants removal behavior and the power production. Six-month trial suggested that the overall removal efficiency of SS, COD, NH4+-N, NO3--N, TN, TP and PO43--P was 76 ± 12.4, 72 ± 7.4, 59 ± 28.3, 69 ± 25.6, 47 ± 19.7, 85 ± 9.5 and 88 ± 8.7%, respectively. The two stages hybrid system (VFCW-MFC + HSSFCW-MFC) continuously generated electrical power with average voltages of 0.44 ± 0.09 and 0.34 ± 0.09 V, and power densities of 33.3 ± 13.81 and 9.0 ± 2.5 mW/m³ in 1st and 2nd stage, respectively. The average net energy recovery (NER) of 1st stage and 2nd stage is in turn 0.91 ± 0.16 and 2.76 ± 0.70 Wh/kg·COD. It indicates that the hybrid CW-MFCs has higher removal efficiency than single stage CW-MFC, while 1st stage plays the major role both in pollutants removal and power generation.It is well known that one of the most outstanding adverse effects related to lead (Pb) exposure is oxidative stress; moreover, recent findings suggest that disturbances of the redox status of cells are associated with epigenetic responses, and metabolism of glutathione (GSH) plays an important role in this process. This study aimed to assess Pb exposure on % methylation of GSH-related genes' promoter regions (%CH3-CpG) and their influence on biomarkers of oxidative stress, in workers exposed to the metal. One hundred nine male workers participated in the study; ICP-MS determined blood lead levels (BLL); biochemical parameters related to redox status, named GSH, glutathione peroxidase (GPX) and glutathione-S-transferase (GST) were quantified by UV/Vis spectrophotometry. Determination of %CH3-CpG of genes GCLC, GPX1, GSR, and GSTP1 were done by pyrosequencing. Inverse associations were seen between BLL and %CH3-CpG-GCLC, and %CH3-CpG-GSTP1. Moreover, metal exposure did not impact GSH, GPX, and GST; however, negative associations were observed between %CH3-CpG-GPX1 and %CH3-CpG-GSTP1, and the activities of GPX and GST, respectively. Taken together, our results give further evidence about adaptive epigenetic response to avoid oxidative damage induced by Pb exposure, allowing a better understanding of the molecular mechanisms related to the metal toxicity.Cadmium (Cd) contamination in different water bodies is a matter of serious concern, as it can cause biomagnification in our food chain up to several trophic levels. In this study, Cd toxicity was investigated in the micro-algae Chlorella pyrenoidosa and Scenedesmus acutus exposed to various concentrations of Cd for 96 h. The inhibitory and toxic effects of Cd2+ on growth and photosynthetic parameters of algae were demonstrated. The bioremediation potentials of these algae were investigated and bioremoval mechanisms were confirmed using qualitative electron microscopic assay such as scanning/transmission electron microscope (S/TEM). learn more The photochemical quenching (Fv/Fm), quantum yield (YII), relative electron transfer rate (rETR) and non-photochemical quenching (NPQ) were inhibited significantly and reduced by ≥ 50% of the control at MIC 50 values. The C. pyrenoidosa and S. acutus biomass have shown 30% and 20% reduction in carbon content and 10% and 12% reduction in nitrogen content at MIC50 values of Cd2+ treatment, respectively. During bioremoval studies, C. pyrenoidosa and S. acutus have shown 45.45% and 57.14% Cd2+ removal of Cd2+ from initial concentration of 1.5 ppm. Out of total cadmium removal C. pyrenoidosa was reported 3% bioaccumulation and 97% biosorption. Whereas S. acutus showed 1.5% accumulation and 98.5% biosorption. The S/TEM images showed the surface accumulation and bioaccumulation of cadmium inside the cytoplasm, vacuoles, and chloroplast. Thus cultivating C. pyrenoidosa and S. acutus would be beneficial in Cd2+ contaminated water bodies as they serve the dual purpose by Cd remediation and algal biomass production.Using chloromethylated polystyrene resin, N,N-diethylaminoethyl methacrylate, and ethylene glycol dimethacrylate as support, functional monomer and cross-linker, respectively, the molecularly imprinted resin (MIR) and non-imprinted resin (NIR) were fabricated by the combination of atom transfer radical polymerization and surface imprinting technique for the selective adsorption of 4-hydroxybenzoic acid (4-HB) from aqueous solutions. The prepared adsorbents were characterized by N2 adsorption/desorption isotherms, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorption processes of the 4-HB with MIR and NIR followed pseudo-second-order kinetics, and the adsorption isotherms were appreciably described by the Langmuir model. Furthermore, the adsorption efficiencies of MIR and NIR for different compounds in single and binary solutions proved that MIR exhibited high adsorption capacity and favorable selectivity toward 4-HB over other structurally related organic compounds (i.e., benzoic acid, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, phenol, and 2-hydroxynaphthalene). In addition, MIR could effectively remove 4-HB from a simulated effluent in a dynamic adsorption experiment. This study illustrates in-depth perspectives on the adsorption mechanisms of 4-HB onto MIR; interactions between the adsorbate and adsorbent were proposed based on the adsorption behaviours and instrumental analyses. The resulting MIR is a promising material for the interference-free adsorbent in the selective adsorption of 4-HB from mixed solutions.

Autoři článku: Collierfletcher3450 (Mendoza Ohlsen)