Mcgrathblackburn1440

Z Iurium Wiki

Verze z 12. 11. 2024, 18:08, kterou vytvořil Mcgrathblackburn1440 (diskuse | příspěvky) (Založena nová stránka s textem „Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type th…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type thermoelectric system Cu x PbSe0.99Te0.01 (x = 0.0025, 0.004, and 0.005) exhibiting record-high average ZT ∼ 1.3 over 400-773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu0.005PbSe0.99Te0.01 attains an exceptionally high average power factor of ∼27 μW cm-1 K-2 from 400 to 773 K with a maximum of ∼30 μW cm-1 K-2 at 300 K, the highest among all n- and p-type PbSe-based materials. Its ∼23 μW cm-1 K-2 at 773 K is even higher than ∼21 μW cm-1 K-2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ∼0.2 Wm-1 K-1 at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu0.005PbSe0.99Te0.01 to ∼1.7 at 773 K.Aimed to realize deep-ultraviolet (DUV, λ less then 200 nm) second harmonic generation (SHG), herein we systematically investigate the scheme for screening DUV nonlinear optical (NLO) material "genes" from traditional borates to hydroxyborates. From our first-principles studies, it is demonstrated that, if hydroxyborate motifs can be aligned by reasonable layered crystallization types, the resulting crystal will exhibit potential DUV NLO capability. Guided by the theoretical analysis and prediction, two targeted hydroxyborates AEB8O15H4 (AE = Sr, Ca) screened from the inorganic crystal structure database are obtained in the experiments. check details Preliminary measurements including powder absorption spectra and SHG effects are in good agreement with our simulation results, well confirming our prediction that AEB8O15H4 (AE = Sr, Ca) would be promising DUV NLO crystals with large band gaps, strong SHG effects, and sufficient birefringence. This work is the first demonstration that hydroxyborates can realize DUV SHG, which may bring new opportunities for finding DUV NLO materials in the hydroxyborate system.Semiconducting polymer nanoparticles (SPNs) emitting in the second near-infrared window (NIR-II, 1000-1700 nm) are promising materials for deep-tissue optical imaging in mammals, but the brightness is far from satisfactory. Herein, we developed a molecular design strategy to boost the brightness of NIR-II SPNs structure planarization and twisting. By integration of the strong absorption coefficient inherited from planar π-conjugated units and high solid-state quantum yield (ΦPL) from twisted motifs into one polymer, a rise in brightness was obtained. The resulting pNIR-4 with both twisted and planar structure displayed improved ΦPL and absorption when compared to the planar polymer pNIR-1 and the twisted polymer pNIR-2. Given the emission tail extending into the NIR-IIa region (1300-1400 nm) of the pNIR-4 nanoparticles, NIR-IIa fluorescence imaging of blood vessels with enhanced clarity was observed. Moreover, a pH-responsive poly(β-amino ester) made pNIR-4 specifically accumulate at tumor sites, allowing NIR-IIa fluorescence image-guided cancer precision resection. This study provides a molecular design strategy for developing highly bright fluorophores.Layered two-dimensional (2D) hybrid perovskites are naturally formed multiple quantum well (QW) materials with promising applications in quantum and optoelectronic devices. In principle, the transport of excitons in 2D perovskites is limited by their short lifetime and small mobility to a distance within a few hundred nanometers. Herein, we report an observation of long-distance carrier transport over 2 to 5 μm in 2D perovskites with various well thicknesses. Such a long transport distance is enabled by trap-induced exciton dissociation into long-lived and nonluminescent electron-hole separated state, followed by a trap-mediated charge transport process. This unique property makes 2D perovskites comparable with 3D perovskites and other traditional semiconductor QWs in terms of a carrier transport property and highlights their potential application as an efficient energy/charge-delivery material.The carbon dioxide reduction reaction (CO2RR), in particular electrochemically, to produce carbonaceous fuels is considered as a viable approach to store energy and to enable a CO2-neutral carbon management. Besides CO2RR, there is an additional strong demand for benign electrochemical reduction of other important heavy non-metal oxo species (e.g., SiO2, phosphine oxides, SO2) with thermodynamically stable E-O bonds, which accrue in large quantities in industry. In this respect, the energy-intense deoxygenation of oxo compounds of silicon, phosphorus, and sulfur is of particular technological importance because they represent some of the main feedstocks to produce important molecules and functional materials. For example, the release of elemental silicon, phosphorus (P4), and sulfur (S8) from naturally occurring minerals (e.g., silicate, phosphate, sulfate) follows energy-intensive chemical routes. Thus, the established chemical reduction routes to deoxygenate such oxo precursors produce tons of reagent waste or, in the case of carbothermal treatment of minerals, afford a lot of CO2. On the contrary, electrochemical strategies developed for the selective deoxygenation of E-O compounds remain as a feasible alternative powered by renewable electricity instead of fossil energy. Moderate reaction conditions, a large scope in experiment design for selective reactions, easy product isolation, and zero reagent waste by applying electrochemical methods offer a promising solution to overcome the drawbacks of chemical reduction routes. This Perspective summarizes the emergence of electrochemical strategies developed for the reduction of selected examples of E-O/E═O compounds with E = silicon, phosphorus, and sulfur in the past few decades and highlights opportunities and future challenges.

Autoři článku: Mcgrathblackburn1440 (Schou Busk)