Kirbyvaughan2100
In this paper, we propose a laser actuated microgripper that can be activated remotely for micromanipulation applications. The gripper is based on an optothermally actuated polymeric chevron-shaped structure coated with optimized metallic layers to enhance its optical absorbance. Gold is used as a metallic layer due to its good absorption of visible light. The thermal deformation of the chevron-shaped actuator with metallic layers is first modeled to identify the parameters affecting its behavior. Then, an optimal thickness of the metallic layers that allows the largest possible deformation is obtained and compared with simulation results. Next, microgrippers are fabricated using conventional photolithography and metal deposition techniques for further characterization. The experiments show that the microgripper can realize an opening of 40 µm, a response time of 60 ms, and a generated force in the order of hundreds of µN. Finally, a pick-and-place experiment of 120 µm microbeads is conducted to confirm the performance of the microgripper. The remote actuation and the simple fabrication and actuation of the proposed microgripper makes it a highly promising candidate to be utilized as a mobile microrobot for lab-on-chip applications.Surface acoustic wave gyroscopes (SAWGs), as a kind of all-solid-state micro-electro-mechanical system (MEMS) gyroscopes, can work normally under extremely high-impact environmental conditions. Among the current SAWGs, amplitude-modulated gyroscopes (AMGs) are all based on the same gyro effect, which was proved weak, and their sensitivity and intensity of the output are both lower than frequency-modulated gyroscopes (FMGs). However, because FMGs need to process a series of frequency signals, their signal processing and circuits are far less straightforward and simple than AMGs. In order to own both high-sensitivity and simple signal processing, a novel surface acoustic traveling wave gyroscope based on amplitude modulation is proposed, using one-dimensional phononic crystals (PCs) in this paper. In view of its specific structure, the proposed gyroscope consists of a surface acoustic wave oscillator and a surface acoustic wave delay line within a one-dimensional phononic crystal with a high-Q defect mode. In this paper, the working principle is analyzed theoretically through the partial wave method (PWM), and the gyroscopes with different numbers of PCs are also designed and studied by using the finite element method (FEM) and multiphysics simulation. The research results demonstrate that under a 1 V oscillator voltage output, the higher sensitivity of -23.1 mV·(rad/s)-1 in the linear range from -8 rad/s to 8 rad/s is reached when the gyro with three PC walls, and the wider linear range from -15 rad/s to 17.5 rad/s with the sensitivity of -6.7 mV·(rad/s)-1 with only one PC wall. Compared with the existing AMGs using metal dots to enhance the gyro effect, the sensitivity of the proposed gyro is increased by 15 to 112 times, and the linear range is increased by 4.6 to 186 times, even without the enhancement of the metal dots.This study compared popular Deep Learning (DL) architectures to classify machining surface roughness using sound and force data. The DL architectures considered in this study include Multi-Layer Perceptron (MLP), Convolution Neural Network (CNN), Long Short-Term Memory (LSTM), and transformer. The classification was performed on the sound and force data generated during machining aluminum sheets for different levels of spindle speed, feed rate, depth of cut, and end-mill diameter, and it was trained on 30 s machining data (10-40 s) of the machining experiments. Since a raw audio waveform is seldom used in DL models, Mel-Spectrogram and Mel Frequency Cepstral Coefficients (MFCCs) audio feature extraction techniques were used in the DL models. The results of DL models were compared for the training-validation accuracy, training epochs, and training parameters of each model. Although the roughness classification by all the DL models was satisfactory (except for CNN with Mel-Spectrogram), the transformer-based modes had the highest training (>96%) and validation accuracies (≈90%). The CNN model with Mel-Spectrogram exhibited the worst training and inference accuracy, which is influenced by limited training data. Confusion matrices were plotted to observe the classification accuracy visually. The confusion matrices showed that the transformer model trained on Mel-Spectrogram and the transformer model trained on MFCCs correctly predicted 366 (or 91.5%) and 371 (or 92.7%) out of 400 test samples. This study also highlights the suitability and superiority of the transformer model for time series sound and force data and over other DL models.This study investigated the effects of structural dimension variation arising from fabrication imperfections or active structural design on the vibration characteristics of a (100) single crystal silicon (SCS) ring-based Coriolis vibratory gyroscope. A mathematical model considering the geometrical irregularities and the anisotropy of Young's modulus was developed via Lagrange's equations for simulating the dynamical behavior of an imperfect ring-based gyroscope. The dynamical analyses are focused on the effects on the frequency split between two vibration modes of interest as well as the rotation of the principal axis of the 2θ mode pair, leading to modal coupling and the degradation of gyroscopic sensitivity. While both anisotropic Young's modulus and nonideal deep trench verticality affect the frequency difference between two vibration modes, they have little contribution to deflecting the principal axis of the 2θ mode pair. However, the 4θ variations in the width of both the ring and the supporting beams cause modal coupling to occur and the degenerate 2θ mode pair to split in frequency. MI-503 To aid the optimal design of MEMS ring-based gyroscopic sensors that has relatively high robustness to fabrication tolerance, a geometrical compensation based on the developed model is demonstrated to identify the geometries of the ring and the suspension.Tissue assays have improved our understanding of cancers in terms of the three-dimensional structures and cellular diversity of the tissue, although they are not yet well-developed. Perfusion culture and active chemical gradient formation in centimeter order are difficult in tissue assays, but they are important for simulating the metabolic functions of tissues. Using microfluidic technology, we developed an H-shaped channel device that could form a long concentration gradient of molecules in a tissue that we could then analyze based on its appearance and content. For demonstration, a cylindrical pork tissue specimen was punched and equipped in the H-shaped channel device, and both ends of the tissue were exposed to flowing distilled and blue-dyed water for 100 h. After perfusion, the tissue was removed from the H-shaped channel device and sectioned. The gradient of the blue intensity along the longitudinal direction of the tissue was measured based on its appearance and content. We confirmed that the measured gradients from the appearance and content were comparable.A high-aspect-ratio three-dimensionally (3D) stacked comb structure for micromirror application is demonstrated by wafer bonding technology in CMOS-compatible processes in this work. A vertically stacked comb structure is designed to circumvent any misalignment issues that could arise from multiple wafer bonding. These out-of-plane comb drives are used for the bias actuation to achieve a larger tilt angle for micromirrors. The high-aspect-ratio mechanical structure is realized by the deep reactive ion etching of silicon, and the notching effect in silicon-on-insulator (SOI) wafers is minimized. The low-temperature bonding of two patterned wafers is achieved with fusion bonding, and a high bond strength up to 2.5 J/m2 is obtained, which sustains subsequent processing steps. Furthermore, the dependency of resonant frequency on device dimensions is studied systematically, which provides useful guidelines for future design and application. A finalized device fabricated here was also tested to have a resonant frequency of 17.57 kHz and a tilt angle of 70° under an AC bias voltage of 2 V.The importance and need for eco-oriented technologies has increased worldwide, which leads to an enhanced development of methods for the synthesis of nanoparticles using biological agents. This review de-scribes the current approaches to the preparation of biogenic silver nanoparticles, using plant extracts and filtrates of fungi and microorganisms. The peculiarities of the synthesis of particles depending on the source of biocomponents are considered as well as physico-morphological, antibacterial and antifungal properties of the resulting nanoparticles which are compared with such properties of silver nanoparticles obtained by chemical synthesis. Special attention is paid to the process of self-assembly of biogenic silver nanoparticles.Fully distributed fiber optic sensors are characteristically used for the measurement of long distances and continuous distribution of space. However, due to the different fiber type, fiber length, ambient temperature and strain, fully distributed fiber optic sensors fail to locate damage accurately and cause a greater error. Therefore, this paper proposes a new positioning method of combining fully distributed fiber optic sensors with fiber Bragg gratings, which enables accurately the localization of a structural damage during the long-term monitoring of fully distributed fiber optic sensors. Moreover, the coupling mechanism of the reflected light from fiber grating and excited Brillouin scattering light is illustrated. Further, it is experimentally verified by locating the cracks of 2 m long reinforced concrete beams. The experimental results show that this proposed method is capable of monitoring the generation of the beam crack and further locating the crack on the concrete beam with an approximate error of 10 cm.The accurate segmentation of retinal blood vessels in fundus is of great practical significance to help doctors diagnose fundus diseases. Aiming to solve the problems of serious segmentation errors and low accuracy in traditional retinal segmentation, a scheme based on the combination of U-Net and Dense-Net was proposed. Firstly, the vascular feature information was enhanced by fusion limited contrast histogram equalization, median filtering, data normalization and multi-scale morphological transformation, and the artifact was corrected by adaptive gamma correction. Secondly, the randomly extracted image blocks are used as training data to increase the data and improve the generalization ability. Thirdly, stochastic gradient descent was used to optimize the Dice loss function to improve the segmentation accuracy. Finally, the Dense-U-net model was used for segmentation. The specificity, accuracy, sensitivity and AUC of this algorithm are 0.9896, 0.9698, 0.7931, 0.8946 and 0.9738, respectively. The proposed method improves the segmentation accuracy of vessels and the segmentation of small vessels.The high-velocity oxy-fuel (HVOF) technique has been extensively used for the deposition of hard metal coatings. The main advantage of HVOF, compared to other thermal spray techniques, is its ability to accelerate the melted powder particles of the feedstock material to a relatively high velocity, leading to good adhesion and low porosity. To further improve the surface properties, a mechanical machining process is often needed; however, a key problem is that the high hardness of the coating makes the polishing process expensive (in terms of time and tool wear). Another approach to achieving surface modification is through interaction with a thermal source, such as a laser beam. In this research, the effects of laser scanning rate, scanning strategy, and number of loop cycles were investigated on an HVOF-coated surface. Cr3C2-25(Ni20Cr) was selected as the coating and NdYVO4 as the laser source. The results demonstrate the significance of the starting coating morphology and how the laser process parameters can be tuned to generate different types of modifications, ranging from polishing to texturing.