Foldagervincent6300
In vibrational strong coupling (VSC), molecular vibrations strongly interact with the modes of an optical cavity to form hybrid light-matter states known as vibrational polaritons. Experiments show that the kinetics of thermally activated chemical reactions can be modified by VSC. Transition-state theory, which assumes that internal thermalization is fast compared to reactive transitions, has been unable to explain the observed findings. Here, we carry out kinetic simulations to understand how dissipative processes, namely, those introduced by VSC to the chemical system, affect reactions where internal thermalization and reactive transitions occur on similar timescales. Using the Marcus-Levich-Jortner type of electron transfer as a model reaction, we show that such dissipation can change reactivity by accelerating internal thermalization, thereby suppressing nonequilibrium effects that occur in the reaction outside the cavity. This phenomenon is attributed mainly to cavity decay (i.e., photon leakage), but a supporting role is played by the relaxation between polaritons and dark states. When nonequilibrium effects are already suppressed in the bare reaction (the reactive species are essentially at internal thermal equilibrium throughout the reaction), we find that reactivity does not change significantly under VSC. Connections are made between our results and experimental observations.We review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated values derived from our proposed set using a multi-term solution of Boltzmann's equation. We observe discrepancies between the simulation and experiment, which we attempt to address by employing a neural network model that is trained to solve the inverse swarm problem of unfolding the cross sections underpinning our experimental swarm measurements. What results from our neural network-based analysis is a refined set of electron-THFA cross sections, which we confirm is of higher consistency with our swarm measurements than that which we initially proposed. We also use our database to calculate electron transport coefficients in pure THFA across a range of reduced electric fields from 0.001 to 10 000 Td.Binary mixtures of fully flexible linear tangent chains composed of bonded Lennard-Jones interaction sites (monomers) were studied using the molecular dynamics simulation in the NVT ensemble. Their interfacial properties were investigated in planar interfaces by direct simulation of an explicit liquid film in equilibrium with its vapor. A method for the calculation of long-range interactions in inhomogeneous fluids was implemented to take into account the potential truncation effects. Surface tension and the pressure tensor were calculated via the classical Irving-Kirkwood method; vapor pressure, orthobaric densities, density profiles, and Gibbs relative adsorption of the volatile component with respect to the heavy component were also obtained. The properties were studied as a function of the temperature, molar concentration of the heavy component, and the asymmetry of the mixture. According to the results of this work, the temperature loses influence on the surface tension, vapor pressure, and Gibbs relative adsorption curves as the molecular length of the heavy component increases. This suggests that the universal behavior observed in pure fluids of Lennard-Jones chains also holds for binary mixtures. The contribution of the long-range interactions turned out to account for about 60%, 20%, and 10% of the surface tension, vapor pressure, and orthobaric density final values, respectively. This contribution was even larger at high temperatures and for large molecules. Strong enrichment of the volatile component at the interface was observed in the asymmetric mixtures. One of these mixtures even showed a barotropic effect at elevated pressures and a class III phase behavior.Charge transfer plasmons (CTPs) that occur in different topology and dimensionality arrays of metallic nanoparticles (NPs) linked by narrow molecular bridges are studied. The occurrence of CTPs in such arrays is related to the ballistic motion of electrons in thin linkers with the conductivity that is purely imaginary, in contrast to the case of conventional CTPs, where metallic NPs are linked by thick bridges with the real optical conductivity caused by carrier scattering. An original hybrid model for describing the CTPs with such linkers has been further developed. For different NP arrays, either a general analytical expression or a numerical solution has been obtained for the CTP frequencies. It has been shown that the CTP frequencies lie in the IR spectral range and depend on both the linker conductivity and the system geometry. It is found that the electron currents of plasmon oscillations correspond to minor charge displacements of only few electrons. RG7204 It has been established that the interaction of the CTPs with an external electromagnetic field strongly depends on the symmetry of the electron currents in the linkers, which, in turn, are fully governed by the symmetry of the investigated system. The extended model and the analytical expressions for the CTPs frequencies have been compared with the conventional finite difference time domain simulations. It is argued that applications of this novel type of plasmon may have wide ramifications in the area of chemical sensing.Coarse-grained (CG) models of polymers involve grouping many atoms in an all-atom (AA) representation into single sites to reduce computational effort yet retain the hierarchy of length and time scales inherent to macromolecules. Parameterization of such models is often via "bottom-up" methods, which preserve chemical specificity but suffer from artificially accelerated dynamics with respect to the AA model from which they were derived. Here, we study the combination of a bottom-up CG model with a dissipative potential as a means to obtain a chemically specific and dynamically correct model. We generate the conservative part of the force-field using the iterative Boltzmann inversion (IBI) method, which seeks to recover the AA structure. This is augmented with the dissipative Langevin thermostat, which introduces a single parameterizable friction factor to correct the unphysically fast dynamics of the IBI-generated force-field. We study this approach for linear polystyrene oligomer melts for three separate systems with 11, 21, and 41 monomers per chain and a mapping of one monomer per CG site.