Palmskovsgaard9022
These correlated motions may occur in the form of an inversion of one amide bond and the concerted rotation of the preceding ϕ and ψ angles to their mirror-image conformation, a variation on "crankshaft flip" motions studied in polymers and peptides. this website The energy landscape of these peptoid macrocycles can be described as a network of conformations interconnected by transformations of individual crankshaft flips. For macrocycles of up to eight residues, our mapping of the landscape is essentially complete.Introducing membrane filtration steps into infant milk formula (IMF) manufacture can partly preserve native whey proteins in the final products. In this study, the IMF produced by membrane filtration (MEM-IMF) and conventional heat treatment (HT-IMF) were compared by using a novel semi-dynamic infant in vitro digestion method. MEM-IMF exhibited a fragmented curd during gastric digestion, and confocal laser light microscopy showed that protein aggregates had disassociated from the fat droplets within 93 min in the MEM-IMF digesta. In contrast, the digesta of HT-IMF showed a more extensive curd formation and denser protein aggregates, which remained intact until the end of gastric digestion. Molecular weight profiles and the primary amine assay suggested that protein degradation and peptide release were faster in the MEM-IMF. In conclusion, the presence of native whey protein in the IMF altered the gastric digestion kinetics by changing coagulation and formation of aggregates, potentially accelerating the rate of gastric emptying in vivo.A general strategy for the efficient preparation of S-rhodamines from the condensation of diaryl thioether and 2-carboxybenzaldehydes was reported. We further took a morpholine containing spirolactam structure as an example to illustrate that these S-rhodamine dyes could be utilized to construct fluorescent probes based on the ring-opening process. This work provided a general approach for the synthesis of novel S-rhodamine dyes, thus possibly facilitating the development of fluorescence imaging.Flexible power sources are critical to achieve the wide adoption of portable and wearable electronics. Herein, a facile and general strategy of fabricating a fibrous electrode was developed by 3D active coating technology, in which a stepping syringe with electrode paste was synchronously injected onto a rotating conductive wire, distinguished from the conventional direct-write 3D printing without a current collector. A series of such electrodes with different coating weight can be fabricated accurately and efficiently by adjusting critical process parameters following a set of derived equations. The demonstrated fibrous Zn-MnO2 battery with a high commercial ε-MnO2 loading of 14.9 mg cm-2 onto a stainless steel wire shows a reasonable energy density of 108 mWh cm-3, while the fiber-shaped supercapacitor with commercial porous graphene exhibits a high capacitance of 142.9 F g-1 and good durability for bending 10,000 cycles. This work constructs a bridge between materials and fiber-shaped electrodes for flexible energy storage devices.Active matter physics has been developed with various types of self-propelled particles, including those with polar and bipolar motility and beyond. However, the bipolar motions experimentally realized so far have been either random along the axis or periodic at intrinsic frequencies. Here we report another kind of bipolar active particles, whose periodic bipolar self-propulsion is set externally at a controllable frequency. We used Quincke rollers-dielectric particles suspended in a conducting liquid driven by an electric field-under an AC electric field instead of the usually used DC field. Reciprocating motion of a single particle at the external frequency was observed experimentally and characterized theoretically as stable periodic motion. Experimentally, we observed not only the reciprocating motion but also non-trivial active Brownian particle (ABP)-like persistent motion in a long time scale. This resulted in a Lorentzian spectrum around zero frequency, which is not accounted for by a simple extension of the conventional model of Quincke rollers to the AC field. It was found that ABP-like motion can be reproduced by considering the top-bottom asymmetry in the experimental system. Moreover, we found a rotational diffusion coefficient much larger than the thermal one, as also reported in previous experiments, which may have resulted from roughness of the electrode surface. We also found self-organized formation of small clusters, such as doublets and triplets, and characterized cooperative motion of particles therein. The AC Quincke rollers reported here may serve as a model experimental system of bipolar active matter, which appears to deserve further investigations.The linguistic input children receive across early childhood plays a crucial role in shaping their knowledge about the world. To study this input, researchers have begun applying distributional semantic models to large corpora of child-directed speech, extracting various patterns of word use/co-occurrence. Previous work using these models has not measured how these patterns may change throughout development, however. In this work, we leverage natural language processing methods-originally developed to study historical language change-to compare caregivers' use of words when talking to younger versus older children. Some words' usage changed more than others; this variability could be predicted based on the word's properties at both the individual and category levels. These findings suggest that caregivers' changing patterns of word use may play a role in scaffolding children's acquisition of conceptual structure in early development.We report the development and evaluation of a series of well-designed single-dose extracellular matrix (ECM)-mimicking nanofibers (NFs)-reinforced hydrogel (HG)-based skin substitute for wound healing. The HG matrix of the proposed skin substitute is composed of gelatin (GE) and sodium alginate (SA), and incorporates hyaluronic acid (HA) as a key component of the natural ECM, as well as the antimicrobial Punica granatum extract (PE). This HG nanocomposite was cross-linked by the biocompatible N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride (EDC) cross-linker, and was reinforced with fragmented trans-ferulic acid (FA)-loaded cellulose acetate/polycaprolactone (PCL/CA) NFs. The NFs were obtained via wet electrospinning into a poly(vinyl alcohol) (PVA) coagulating solution to closely resemble the porous structure of the ECM fibers, which facilitates cell migration, attachment, and proliferation. The proposed design of the skin substitute allows adjustable mechanical characteristics and outstanding the wound diameter to 0.95 mm after 15 days of treatment. Moreover, the histological investigation of the wound area demonstrated that the applied skin substitutes have not only enhanced the wound healing progress, but also can participate in improving the quality of the regenerated skin in the treated area via facilitating collagen fibers regeneration and deposition.Although reports of human infection with influenza A(H5N6) increased in 2021, reports of similar H5N6 virus infection in poultry are few. We detected 10 avian influenza A(H5N6) clade 2.3.4.4b viruses in poultry from 4 provinces in China. The viruses showed strong immune-escape capacity and complex genetic reassortment, suggesting further transmission risk.Synaptic transistors that accommodate concurrent signal transmission and learning in a neural network are attracting enormous interest for neuromorphic sensory processing. To remove redundant sensory information while keeping important features, artificial synaptic transistors with non-linear conductance are desired to apply filter processing to sensory inputs. Here, we report the realization of non-linear synapses using a two-dimensional van der Waals (vdW) heterostructure (MoS2/h-BN/graphene) based float gate memory device, in which the semiconductor channel is tailored via a surface acceptor (ZnPc) for subthreshold operation. In addition to usual synaptic plasticity, the memory device exhibits highly non-linear conductance (rectification ratio >106), allowing bidirectional yet only negative/inhibitory current to pass through. We demonstrate that in a lateral coupling network, such a float gate memory device resembles the key lateral inhibition function of horizontal cells for the formation of an ON-center/OFF-surround receptive field. When combined with synaptic plasticity, the lateral inhibition weights are further tunable to enable adjustable edge enhancement for early visual processing. Our results here hopefully open a new scheme toward early sensory perception via lateral inhibitory synaptic transistors.Cyclobutadiene is a well-known playground for theoretical chemists and is particularly suitable to test ground- and excited-state methods. Indeed, due to its high spatial symmetry, especially at the D4h square geometry but also in the D2h rectangular arrangement, the ground and excited states of cyclobutadiene exhibit multiconfigurational characters and single-reference methods, such as standard adiabatic time-dependent density-functional theory (TD-DFT) or standard equation-of-motion coupled cluster (EOM-CC), are notoriously known to struggle in such situations. In this work, using a large panel of methods and basis sets, we provide an extensive computational study of the automerization barrier (defined as the difference between the square and rectangular ground-state energies) and the vertical excitation energies at D2h and D4h equilibrium structures. In particular, selected configuration interaction (SCI), multireference perturbation theory (CASSCF, CASPT2, and NEVPT2), and coupled-cluster (CCSD, CC3, CCSDT, CC4, and CCSDTQ) calculations are performed. The spin-flip formalism, which is known to provide a qualitatively correct description of these diradical states, is also tested within TD-DFT (combined with numerous exchange-correlation functionals) and the algebraic diagrammatic construction [ADC(2)-s, ADC(2)-x, and ADC(3)]. A theoretical best estimate is defined for the automerization barrier and for each vertical transition energy.Natural evolution has been creating new complex systems for billions of years. The process is spontaneous and requires neither intelligence nor moral purpose but is nevertheless difficult to understand. The late Dan Tawfik spent years studying enzymes as they adapted to recognize new substrates. Much of his work focused on gaining fundamental insights, so the practical utility of his experiments may not be obvious even to accomplished protein engineers. Here we focus on two questions fundamental to any directed evolution experiment. Which proteins are the best starting points for such experiments? Which trait(s) of the chosen parental protein should be evolved to achieve the desired outcome? We summarize Tawfik's contributions to our understanding of these problems, to honor his memory and encourage those unfamiliar with his ideas to read his publications.Wearable and wireless monitoring of biomarkers such as lactate in sweat can provide a deeper understanding of a subject's metabolic stressors, cardiovascular health, and physiological response to exercise. However, the state-of-the-art wearable and wireless electrochemical systems rely on active sweat released either via high-exertion exercise, electrical stimulation (such as iontophoresis requiring electrical power), or chemical stimulation (such as by delivering pilocarpine or carbachol inside skin), to extract sweat under low-perspiring conditions such as at rest. Here, we present a continuous sweat lactate monitoring platform combining a hydrogel for osmotic sweat extraction, with a paper microfluidic channel for facilitating sweat transport and management, a screen-printed electrochemical lactate sensor, and a custom-built wireless wearable potentiostat system. Osmosis enables zero-electrical power sweat extraction at rest, while continuous evaporation at the end of a paper channel allows long-term sensing from fresh sweat.