Abdirouse9009

Z Iurium Wiki

Verze z 12. 11. 2024, 01:34, kterou vytvořil Abdirouse9009 (diskuse | příspěvky) (Založena nová stránka s textem „1935 ).<br /><br /> Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and man…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

1935 ).

Advances in single-cell RNA-seq technology have led to great opportunities for the quantitative characterization of cell types, and many clustering algorithms have been developed based on single-cell gene expression. However, we found that different data preprocessing methods show quite different effects on clustering algorithms. Moreover, there is no specific preprocessing method that is applicable to all clustering algorithms, and even for the same clustering algorithm, the best preprocessing method depends on the input data.

We designed a graph-based algorithm, SC3-e, specifically for discriminating the best data preprocessing method for SC3, which is currently the most widely used clustering algorithm for single cell clustering. When tested on eight frequently used single-cell RNA-seq data sets, SC3-e always accurately selects the best data preprocessing method for SC3 and therefore greatly enhances the clustering performance of SC3.

The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.

The SC3-e algorithm is practically powerful for discriminating the best data preprocessing method, and therefore largely enhances the performance of cell-type clustering of SC3. It is expected to play a crucial role in the related studies of single-cell clustering, such as the studies of human complex diseases and discoveries of new cell types.

Gene-set analysis tools, which make use of curated sets of molecules grouped based on their shared functions, aim to identify which gene-sets are over-represented in the set of features that have been associated with a given trait of interest. Such tools are frequently used in gene-centric approaches derived from RNA-sequencing or microarrays such as Ingenuity or GSEA, but they have also been adapted for interval-based analysis derived from DNA methylation or ChIP/ATAC-sequencing. Gene-set analysis tools return, as a result, a list of significant gene-sets. However, while these results are useful for the researcher in the identification of major biological insights, they may be complex to interpret because many gene-sets have largely overlapping gene contents. Additionally, in many cases the result of gene-set analysis consists of a large number of gene-sets making it complicated to identify the major biological insights.

We present GeneSetCluster, a novel approach which allows clustering of identified gene-sets, from one or multiple experiments and/or tools, based on shared genes. GeneSetCluster calculates a distance score based on overlapping gene content, which is then used to cluster them together and as a result, GeneSetCluster identifies groups of gene-sets with similar gene-set definitions (i.e. gene content). These groups of gene-sets can aid the researcher to focus on such groups for biological interpretations.

GeneSetCluster is a novel approach for grouping together post gene-set analysis results based on overlapping gene content. GeneSetCluster is implemented as a package in R. The package and the vignette can be downloaded at https//github.com/TranslationalBioinformaticsUnit.

GeneSetCluster is a novel approach for grouping together post gene-set analysis results based on overlapping gene content. GeneSetCluster is implemented as a package in R. The package and the vignette can be downloaded at https//github.com/TranslationalBioinformaticsUnit.

Most genomic predictions use a unique population that is split into a training and a validation set. However, genomic prediction using genetically heterogeneous training sets could provide more flexibility when constructing the training sets in small populations. The aim of our study was to investigate the potential of genomic prediction of feed efficiency related traits using training sets that combine animals from two different, but genetically-related lines. Pemetrexed We compared realized prediction accuracy and prediction bias for different training set compositions for five production traits.

Genomic breeding values (GEBV) were predicted using the single-step genomic best linear unbiased prediction method in six scenarios applied iteratively to two genetically-related lines (i.e. 12 scenarios). The objective for all scenarios was to predict GEBV of pigs in the last three generations (~ 400 pigs, G7 to G9) of a given line. For each line, a control scenario was set up with a training set that included only anima reference populations, especially to initiate genomic selection in small-sized lines, for which the number of historical samples is small and that are developed simultaneously. This applies especially to poultry and pig breeding and to other crossbreeding schemes.

Our results show that genomic prediction using a training set that includes animals from genetically-related lines can be as accurate as genomic prediction using a training set from the target population. With combined reference sets, accuracy increased for traits that were highly affected by selection. Our results provide insights into the design of reference populations, especially to initiate genomic selection in small-sized lines, for which the number of historical samples is small and that are developed simultaneously. This applies especially to poultry and pig breeding and to other crossbreeding schemes.

Mass spectrometry (MS) has become a promising analytical technique to acquire proteomics information for the characterization of biological samples. Nevertheless, most studies focus on the final proteins identified through a suite of algorithms by using partial MS spectra to compare with the sequence database, while the pattern recognition and classification of raw mass-spectrometric data remain unresolved.

We developed an open-source and comprehensive platform, named MSpectraAI, for analyzing large-scale MS data through deep neural networks (DNNs); this system involves spectral-feature swath extraction, classification, and visualization. Moreover, this platform allows users to create their own DNN model by using Keras. To evaluate this tool, we collected the publicly available proteomics datasets of six tumor types (a total of 7,997,805 mass spectra) from the ProteomeXchange consortium and classified the samples based on the spectra profiling. The results suggest that MSpectraAI can distinguish different types of samples based on the fingerprint spectrum and achieve better prediction accuracy in MS1 level (average 0.

Autoři článku: Abdirouse9009 (Lundgren Murphy)