Viborghoward1541
Furthermore, RNA interference and baculovirus expression system combined with MTT cytotoxicity assay demonstrated that only SlCPR-X1 with the N-terminal membrane anchor as the major CPR potentially involved in S. litura indoxacarb resistance. The outcome of this study further expands our understanding of the important role of insect CPR in xenobiotics detoxification and resistance development, and CPR could be a potential target for insecticide resistance management mediated by RNAi or CRISPR/Cas.Well-known 4-hydroxycoumarin derivatives, such as warfarin, act as inhibitors of the vitamin K epoxide reductase (VKOR) and are used as anticoagulants. Mutations of the VKOR enzyme can lead to resistance to those compounds. This has been a problem in using them as medicine or rodenticide. Most of these mutations lie in the vicinity of potential warfarin-binding sites within the ER-luminal loop structure (Lys30, Phe55) and the transmembrane helix (Tyr138). However, a VKOR mutation found in Tokyo in warfarin-resistant rats does not follow that pattern (Leu76Pro), and its effect on VKOR function and structure remains unclear. We conducted both in vitro kinetic analyses and in silico docking studies to characterize the VKOR mutant. On the one hand, resistant rats (R-rats) showed a 37.5-fold increased IC50 value to warfarin when compared to susceptible rats (S-rats); on the other hand, R-rats showed a 16.5-fold lower basal VKOR activity (Vmax/Km). Docking calculations exhibited that the mutated VKOR of R-rats has a decreased affinity for warfarin. Molecular dynamics simulations further revealed that VKOR-associated warfarin was more exposed to solvents in R-rats and key interactions between Lys30, Phe55, and warfarin were less favored. This study concludes that a single mutation of VKOR at position 76 leads to a significant resistance to warfarin by modifying the types and numbers of intermolecular interactions between the two.Flufenoxuron is a benzoylurea pesticide that is used to eradicate insects and acarids in the farmland. Even though it specifically works on target animals, the possibilities of its bioaccumulation and harmful effects on non-target animals cannot be denied. As the usage and application of pesticides increases, exposure to them also increases through ingestion of food residues, inhalation, or dermal contact. Pesticides could also be considered as endocrine disruptor chemicals; however, the reproductive toxicity and cellular mechanisms of flufenoxuron have not been identified. Our results indicate that flufenoxuron inhibits cellular proliferation and hampers calcium homeostasis, especially by targeting mitochondria. We also confirmed the induction of endoplasmic reticulum (ER) stress and ER-mitochondrial contact signaling. Using pharmacological inhibitors, we also observed that the mitogen-activated protein kinase and Akt signaling pathways were upregulated by flufenoxuron. Further, by oral administration of flufenoxuron (100 mg/kg/bw) to C57BL/6 male mice, we observed transcriptional changes in the testis-related genes. Collectively, we demonstrated that flufenoxuron inhibits cell proliferation and alters gene expression in mouse testis cells and induces testicular dysfunction in mice. These results indicate that flufenoxuron may be harmful to male reproduction and fertility in the early stages of pregnancy.Metabolic resistance driven by multiple P450 genes is worsening insecticide resistance in malaria vectors. However, it remains unclear whether such multiple over-expression imposes an additive fitness cost in the vectors. Here, we showed that two highly over-expressed P450 genes (CYP6P9a and CYP6P9b) combine to impose additive fitness costs in pyrethroid-resistant Anopheles funestus. Genotyping of the CYP6P9b resistance allele in hybrid mosquitoes from a pyrethroid-resistant FUMOZ-R and the susceptible FANG strains revealed that this gene imposes a fitness cost in resistant mosquitoes similar to CYP6P9a. Homozygote susceptible CYP6P9b_S (SS) significantly lay more eggs than the resistant (OR = 2.2, P = 0.04) and with greater hatching rate (p less then 0.04). Homozygote resistant larvae CYP6P9b_R (RR) developed significantly slower than homozygote susceptible from L1-L4 (χ2 = 7.2; P = 0.007) with a late pupation observed for RR compared to both heterozygotes and homozygotes susceptible (χ2 = 11.17; P = 0.0008). No difference was observed between genotypes for adult longevity with no change in allele frequency and gene expression across the lifespan. Furthermore, we established that CYP6P9b combines with CYP6P9a to additively exacerbate the fitness cost of pyrethroid resistance with a greater reduction in fecundity/fertility and increased developmental time of double homozygote resistant mosquitoes. Moreover, an increased proportion of double homozygote susceptible individuals was noted over 10 generations in the insecticide-free environment (χ2 = 6.3; P = 0.01) suggesting a reversal to susceptibility in the absence of selection. Tozasertib ic50 Such greater fitness cost imposed by multiple P450 genes shows that resistance management strategy based on rotation could help slow the spread of resistance.Rotenone, a selective inhibitor of mitochondrial complex I, has been extensively studied on kinds of neuron and neuroblast in Parkinson's disease. However, little is known about the potential mechanism of this promising botanical insecticide upon insect cells. In the article, cell proliferation of two Lepidoptera cell lines, Spodoptera litura SL-1 cells and Spodoptera frugiperda Sf9 cells, were all inhibited by rotenone in a time- and dose-dependent manner. Typical necrotic characteristics of cell morphology and ultrastructure, such as plasma membrane collapses and organelle lyses, were all observed by transmission electron microscope and scanning electron microscope. Moreover, irregular DNA degradation was also detected by DNA gel electrophoresis and Hoechst 33258 staining, while the typical apoptotic feature, DNA ladder, hadn't been observed. Flow cytometric analysis showed that rotenone-induced cell death of Sf9 and SL-1 cells accompanied with the plasma membrane potential depolarization and mitochondrial membrane potential reduction.