Wolffkincaid3682

Z Iurium Wiki

Verze z 11. 11. 2024, 00:15, kterou vytvořil Wolffkincaid3682 (diskuse | příspěvky) (Založena nová stránka s textem „T signaling is critically implicated in the etiology of alcohol use disorder. Our study, using a well-established rat model of alcohol dependence, ex vivo…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

T signaling is critically implicated in the etiology of alcohol use disorder. Our study, using a well-established rat model of alcohol dependence, ex vivo electrophysiology and ISH, provides mechanistic insights into how both chronic alcohol exposure and protracted withdrawal dysregulate 5-HT signaling in the CeA. Thus, our study further expands our understanding of CeA cellular mechanisms involved in the pathophysiology of alcohol dependence and withdrawal.Here we examine what effects acute manipulation of the cerebellum, a canonically motor structure, can have on the hippocampus, a canonically cognitive structure. In male and female mice, acute perturbation of the cerebellar vermis (lobule 4/5) or simplex produced reliable and specific effects in hippocampal function at cellular, population, and behavioral levels, including evoked local field potentials, increased hippocampal cFos expression, and altered CA1 calcium event rate, amplitudes, and correlated activity. We additionally noted a selective deficit on an object location memory task, which requires objection-location pairing. We therefore combined cerebellar optogenetic stimulation and CA1 calcium imaging with an object-exploration task, and found that cerebellar stimulation reduced the representation of place fields near objects, and prevented a shift in representation to the novel location when an object was moved. Together, these results clearly demonstrate that acute modulation of the cerebellum alters hippocampal function, and further illustrates that the cerebellum can influence cognitive domains.SIGNIFICANCE STATEMENT The cerebellum, a canonically motor-related structure, is being increasingly recognized for its influence on nonmotor functions and structures. The hippocampus is a brain region critical for cognitive functions, such as episodic memory and spatial navigation. To investigate how modulation of the cerebellum may impact the hippocampus, we stimulated two sites of the cerebellar cortex and examined hippocampal function at multiple levels. We found that cerebellar stimulation strongly modulates hippocampal activity, disrupts spatial memory, and alters object-location processing. Therefore, a canonically cognitive brain area, the hippocampus, is sensitive to cerebellar modulation.

The goal of our study is to assess the role of microglial activation in MS-associated fatigue (MSAF) using [F-18]PBR06-PET.

Fatigue severity was measured using the Modified Fatigue Impact Scale (MFIS) in 12 subjects with MS (7 relapsing-remitting and 5 secondary progressive) and 10 healthy control participants who underwent [F-18]PBR06-PET. The MFIS provides a total fatigue score as well as physical, cognitive, and psychosocial fatigue subscale scores. Standardized Uptake Value (SUV) 60-90 minute frame PET maps were coregistered to 3T MRI. Voxel-by-voxel analysis using Statistical Parametric Mapping and atlas-based regional analyses were performed. SUV ratios (SUVRs) were global brain normalized.

Peak voxel-based level of significance for correlation between total fatigue score and PET uptake was localized to the right substantia nigra (T-score 4.67,

= 0.001). Similarly, SUVRs derived from atlas-based segmentation of the substantia nigra showed significant correlation with MFIS (r = 0.76,

= 0.004). On multiple regression, the right substantia nigra was an independent predictor of total MFIS (

= 0.02) and cognitive MFIS subscale values (

= 0.007), after adjustment for age, disability, and depression. Several additional areas of significant correlations with fatigue scores were identified, including the right parahippocampal gyrus, right precuneus, and juxtacortical white matter (all

< 0.05). There was no correlation between fatigue scores and brain atrophy and lesion load in patients with MS.

Substantia nigra microglial activation is linked to fatigue in MS. Microglial activation across key brain regions may represent a unifying mechanism for MSAF, and further evaluation of neuroimmunologic basis of MSAF is warranted.

Substantia nigra microglial activation is linked to fatigue in MS. Microglial activation across key brain regions may represent a unifying mechanism for MSAF, and further evaluation of neuroimmunologic basis of MSAF is warranted.Temporally spaced genetic data allow for more accurate inference of population genetic parameters and hypothesis testing on the recent action of natural selection. In this work, we develop a novel likelihood-based method for jointly estimating selection coefficient and allele age from time series data of allele frequencies. Our approach is based on a hidden Markov model where the underlying process is a Wright-Fisher diffusion conditioned to survive until the time of the most recent sample. This formulation circumvents the assumption required in existing methods that the allele is created by mutation at a certain low frequency. We calculate the likelihood by numerically solving the resulting Kolmogorov backward equation backward in time while reweighting the solution with the emission probabilities of the observation at each sampling time point. This procedure reduces the two-dimensional numerical search for the maximum of the likelihood surface, for both the selection coefficient and the allele age, to a one-dimensional search over the selection coefficient only. Aticaprant purchase We illustrate through extensive simulations that our method can produce accurate estimates of the selection coefficient and the allele age under both constant and nonconstant demographic histories. We apply our approach to reanalyze ancient DNA data associated with horse base coat colors. We find that ignoring demographic histories or grouping raw samples can significantly bias the inference results.Sleep is a conserved behavioral state. Invertebrates typically show quiet sleep, whereas in mammals, sleep consists of periods of nonrapid-eye-movement sleep (NREMS) and REM sleep (REMS). We previously found that the transcription factor AP-2 promotes sleep in Caenorhabditiselegans and Drosophila In mammals, several paralogous AP-2 transcription factors exist. Sleep-controlling genes are often conserved. However, little is known about how sleep genes evolved from controlling simpler types of sleep to govern complex mammalian sleep. Here, we studied the roles of Tfap2a and Tfap2b in sleep control in mice. Consistent with our results from C. elegans and Drosophila, the AP-2 transcription factors Tfap2a and Tfap2b also control sleep in mice. Surprisingly, however, the two AP-2 paralogs play contrary roles in sleep control. Tfap2a reduction of function causes stronger delta and theta power in both baseline and homeostasis analysis, thus indicating increased sleep quality, but did not affect sleep quantity. By contrast, Tfap2b reduction of function decreased NREM sleep time specifically during the dark phase, reduced NREMS and REMS power, and caused a weaker response to sleep deprivation.

Autoři článku: Wolffkincaid3682 (Ditlevsen Winters)