Barlowlarsen2661

Z Iurium Wiki

Verze z 10. 11. 2024, 23:56, kterou vytvořil Barlowlarsen2661 (diskuse | příspěvky) (Založena nová stránka s textem „Megalocytivirus infection is a major threat in rock bream aquaculture in Korea. To produce a highly concentrated megalocytivirus, primary cells, establishe…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Megalocytivirus infection is a major threat in rock bream aquaculture in Korea. To produce a highly concentrated megalocytivirus, primary cells, established cell line and persistently infected cell line were used in this study. Megalocytivirus was inoculated in primary fin cell cultures of red sea bream (Pagrus major), rock bream (Oplegnathus fasciatus), olive flounder (Paralichthys olivaceus) and black sea bream (Acanthopagrus schlegelii) and produced at similar concentrations of 108.99 - 9.88 viral particles/mL in all cultures while produced 107.31 viral particles/mL in grunt fin (GF) cell line. Since only red sea bream fin culture was amenable to subculturing for more than 100 times, it was established into Pagrus major fin (PMF) cell line. A persistently infected PMF cell line (PI-PMF) was obtained by continuous subculturing every 7 days as a batch culture system (PI-PMF-B) after infecting with megalocytivirus. Virus in supernatant of PI-PMF-B was maintained at high concentrations throughout over 50 consecutive subcultures in a relatively narrow range from 108.33 to 108.94 viral particles/mL with high level of CPE. For a more efficient and convenient production, a semi-batch culture system (PI-PMF-S) was developed in which culture media were exchanged at intervals of 3 days without subculturing for more than 50 media exchanges. Despite low virus productivity in a single cell (specific virus productivity, SVP), total cell number was increased in PI-PMF-S, allowing us to efficiently obtain a much higher concentration of virus (108.56 to 109.75 viral particles/mL) than in PMF-B. This is the first study to report detailed new methods for continuous and efficient production of high concentrations of megalocytivivrus with characterization of viral propagation in persistently infected cells.

Ideal bone defect repair scaffolds should be biodegradable, biocompatible, bioactive, porous, and provide adequate mechanical support. However, it is challenging to fabricate such an ideal bone repair scaffold. Previously, we showed that 5 wt.% strontium-doped hydroxyapatite (Sr-HA) scaffolds prepared by spark plasma sintering (SPS) technology exhibited good biocompatibility. Moreover, unlike pure hydroxyapatite (HA) scaffolds, HA scaffolds containing strontium (Sr) exhibited superior bioactivity, higher proliferation rate of BMSCs and MG-63 osteoblast cells, as well as enhanced BMSCs differentiation.

In this study, we prepared pure HA scaffolds and 5 wt.% strontium containing Sr-HA scaffolds by SPS technology without adhesive, ammonium bicarbonate as pore former. TNO155 Subsequently, scanning electron microscope (SEM) and X-Ray diffraction (XRD) were used to characterize the properties of Sr-HA and HA scaffolds. The ability of the scaffolds to repair bone defects was evaluated using a critical-sized rabbit tibiration of the host bone, and extensive woven bone was formed on the surface of the Sr-HA scaffolds. After 16 weeks, the bone strump became blunt and a small amount of callus was formed in the blank control group. Comparatively, the scaffolds were substantially degraded in the Sr-HA scaffolds implanted group while scaffolds shadows still were observed in the HA implanted group. Bone remodeling and cavity recanalization were completely developed in the Sr-HA scaffolds group. The compressive strength of repaired bone in the Sr-HA scaffolds implantation group was higher than that of HA scaffolds implantation group after 8 weeks and 16 weeks of surgery.

Our results show that the Sr-HA composite scaffolds can effectively repair bone defects and have good biodegradable properties.

Our results show that the Sr-HA composite scaffolds can effectively repair bone defects and have good biodegradable properties.Artificial in vitro blood production has been presented by recent literature as a necessary and achievable aim. In order to obtain the required hematopoietic stem cells (HSCs) proliferation and differentiation for mature blood cell production, studies have been conducted on using either cytokine-rich conditions or co-culturing with other cells. Alternatively, three-dimensional (3D) cell culture environments (such as tissue scaffolds) have been shown to affect cell morphology, proliferation and differentiation. Therefore, we investigated decellularized cancellous bones (DCBs), which provide 3D structure and natural extracellular matrix, as a scaffold for preserving and growing HSC niches in vitro. Additionally, we optimized a cell seeding method using mesenchymal stem cells as supporting cells. We discovered that, although adhering only to the top of DCBs when seeded at 37 °C, mesenchymal stem cells adhered to the inside of the scaffold at 4 °C, indicating that the seeding temperature is important to control the adherence ability of stem cells. This, in turn, was revealed to be important for HSC cell seeding on 3D extracellular matrix, and provides the required cell methodology to use DCBs as a great scaffold for blood cell production.The constant exposure of ocular surface to external environment and then to several microbial agents is often related to the pathogenesis of various inflammatory eye disorders. In the present study α-Smooth Muscle Actin (α-SMA) and Langerin CD/207 expression and function was investigated in a rabbit corneal keratitis. The inflammation was induced by the secreted form of glycoprotein B (gB1s) of HSV-1, in an ex vivo rabbit corneal model. α-SMA is often used as a marker for myofibroblasts. In this study, for the first time, we show α-SMA positive corneal epithelial cells, during HSV-1 cornea inflammation, demonstrating a crucial role in wound healing, especially during remodeling phase. Furthermore, we show the presence of Dendritic Cells Langerin CD/207 positive, located mainly in the basal epithelial layer and in corneal stroma during the inflammatory processes. Our result validating the ex vivo organotypic rabbit corneal model, for the study about pathogenesis of HSV-1 ocular infection.Bone marrow aspirate concentrate (BMAC) is a potentially useful biological product for bone regeneration. This study investigated whether BMAC can be enriched by local minor corticotomies. Five 4-month-old domestic pigs were used with each pig undergoing two minor corticotomies at one randomly-selected tibia. Two weeks after the operation, bone marrow was aspirated from both tibiae and processed into BMAC samples. The amount of mesenchymal stem cells (MSCs) and the concentration of several regenerative growth factors contained in BMAC, as well as the proliferative and osteogenic differentiation capacity of MSCs, were compared between the corticotomy and the control sides. Another four weeks later, healing of the corticotomies was evaluated by radiographic and histological methods. The results demonstrated that BMAC from the corticotomy side contained significantly more MSCs than the control side. MSCs from the corticotomy side also proliferated significantly faster and tended to have stronger osteogenic differentiation than those from the control side.

Autoři článku: Barlowlarsen2661 (Andreassen Coughlin)