Udsentruelsen4559

Z Iurium Wiki

Verze z 10. 11. 2024, 19:54, kterou vytvořil Udsentruelsen4559 (diskuse | příspěvky) (Založena nová stránka s textem „Manganese (Mn) is toxic at higher concentrations requiring its removal before returning the wastewater to the environment. This article reported the Mn rem…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Manganese (Mn) is toxic at higher concentrations requiring its removal before returning the wastewater to the environment. This article reported the Mn removal of two fungi strains isolated from mine wastewater. ITS rRNA region sequencing identified the fungi strains as Cladosporium halotolerans and Hypocrea jecorina. Mn2+ removal assays were performed in Sabouraud broth with 50 mg L-1 Mn2+ supplemented and bioleaching assays using MnO2 instead of MnSO4 at the same conditions. C. halotolerans removed 96 % of 50 mg L-1 Mn2+ at two weeks without MnO2 bioleaching with 649.9 mg of biomass and H. jecorina removed about 50 % of Mn2+ in 21 days from initial 50 mg of Mn2+ L-1 with 316.8 mg of biomass. Extracellular laccases were present in C. halotolerans agar regardless of the Mn addition. Mn adsorbed was detected on C. halotolerans hyphae. Mn oxidation was positive to H. jecorina by reaction of its medium with Leucoberbelin blue. © 2020 Published by Elsevier B.V.The undesirable environmental impacts of inappropriate application of pesticides have brought about research into new matrices for controlled release of pesticides. Porous starch citrate biopolymer was designed for the release of carbofuran in this experiment and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermo-Gravimetric Analysis (TGA) for functional group, surface morphology and thermal stability properties respectively. The SEM revealed highly stabilized porous starch citrate biopolymers with porous structures and gradients suitable for controlled release studies. The transmittance bands at 3347, 1714 and 1073 cm-1 for OH, CO and COC-[bond, double bond]-- stretching vibrations further confirms the successful synthesis of the biopolymer. TGA showed an increase in the thermal stability after citric acid modification with one-step decomposition from 290 ᵒC to 500 ᵒC. From Korsemeyer-Peppas model, the carbofuran-porous starch citrate (CBFN/PRS/STH/CTRT) followed a lower diffusion release model with gradual increment in all the quantity of carbofuran loaded. An accelerated rate of diffusion percentage was seen in direct application of carbofuran. Egg hatch and mortality of juveniles were recorded on daily basis for seven days. Direct application of carbofuran (CBFN/DRT) and carbofuran-porous starch citrate biopolymer gave the best results with significant (p less then 0.05) reduction in egg hatch and higher percentage mortality. The rate of release of carbofuran from the starch citrate bio polymer matrix was significantly lower than the direct application, and in spite of the slow rate of release, higher juvenile mortality and reduction in egg hatch was achieved. © 2020 Published by Elsevier B.V.Microalgae polysaccharides represent a potentially bioressource for the enhancement and the protection of agricultural crops. We investigate the possibility to use microalgae polysaccharides as a plant biostimulant. The crude polysaccharides extract (PS) from three microalgae strains were applied to Solanum lycopersicum plants by irrigation and compared basing on their effects on shoot and root length, nodes number and shoot and root dry weight. The application of 1 mg mL-1 PS from A. platensis, D. salina and Porphorydium sp. on tomato plants improved significantly the nodes number (NN), shoot dry weight (SDW), and shoot length (SS) by75 %, 46,6 %, 25,26 % compared to control respectively. Furthermore, crude PS treatment showed an improvement of carotenoid, chlorophyll and proteins content, and Nitrate Reductase (NR), NAD-Glutamate Dehydrogenase (NAD-GDH) activities in plants leaves compared to control. 1 mg mL-1 of Porphorydium sp. enhanced significantly the carotenoid content and NAD-GDH activity by 400 %, 200 % compared to control respectively. In the same way, A. platensis PS improved chl a, chl b and NR activity by 90.1 %, 102.7 % and 88.34 compared to control respectively. In addition, it is found that a PS treatment has affected the protein content, which reaches 88.3 % under 0.5 mg mL-1 of D. salina PS treatment. GC-MS metabolomics analysis also showed a change in lipids, sterol and alkanes profiles. Some sterols precursors were increased such as Cholesta-6,22,24-triene, which may indicate an enhancement of the biosynthesis of sterols and/or steroidal glycoalkaloids in treated plants. Therefore, this is an evidence to use microalgae polysaccharides as a plant biostimulant. © 2020 Published by Elsevier B.V.Protein post-translational modification (PTM) plays an important role in many biological processes; of which glycosylation is arguably one of the most complex and diverse modifications and is crucial for the safety and efficacy of biotherapeutic proteins. Mass spectrometric characterization of protein glycosylation is well established with clear advantages and disadvantages; on one hand it is precise and information-rich, as well as being relative inexpensive in terms of the reagents and consumables despite the instrumentation cost and, depending on the method, can give site specific information; on the other hand it generally suffers from low throughput, restriction to largely purified samples and is less quantitative, especially for sialylated glycan species. Here, we describe a high throughput, site-specific, targeted mass spectrometric peptide mapping approach to quickly screen/rank candidate production cell lines and culture conditions that give favourable glycosylation profiles directly from conditioned culture media for an Fc-fusion protein. The methodology is fully compatible with automation and combines the speed of 'top-down' mass spectrometry with the site-specific information of 'bottom-up' mass spectrometry. In addition, this strategy can be used for multi-attribute product quality screening/monitoring as an integral part of cell line selection and process development. © 2020 The Authors.Neural precursor cells have been much studied to further our understanding of the far-reaching and controversial question of adult neurogenesis. STC-15 in vitro Currently, differentiation of primary neural precursor cells from the mouse dentate gyrus via 2-dimentional in vitro culture yields low numbers of neurons, a major hindrance to the field of study. 3-dimentional "neurosphere" culture allows better 3D cell-cell contact, but control over cell differentiation is poor because nutrition and oxygen restrictions at the core of the sphere causes spontaneous differentiation, predominantly to glial cells, not neurons. Our group has developed macroporous scaffolds, which overcome the above-mentioned problems, allowing long-term culture of neural stem cells, which can be differentiated into a much higher yield of neurons. Herein we describe a method for culturing neural precursor cells on RGD peptide functionalized-heparin containing cryogel scaffolds, either in standard non-adherent well-plates (static culture) or in spinner flasks (dynamic culture).

Autoři článku: Udsentruelsen4559 (Kelly Travis)