Crosbysharma9850
Moreover, this ultrastable Zn@ZIF anode also enables a full Zn ion battery with outstanding cyclic stability (10 000 cycles).In hepatocellular carcinoma (HCC) patients with extrahepatic metastasis, the lung is the most frequent site of metastasis. However, how the lung microenvironment favors disseminated cells remains unclear. Here, it is found that nidogen 1 (NID1) in metastatic HCC cell-derived extracellular vesicles (EVs) promotes pre-metastatic niche formation in the lung by enhancing angiogenesis and pulmonary endothelial permeability to facilitate colonization of tumor cells and extrahepatic metastasis. EV-NID1 also activates fibroblasts, which secrete tumor necrosis factor receptor 1 (TNFR1), facilitate lung colonization of tumor cells, and augment HCC cell growth and motility. Administration of anti-TNFR1 antibody effectively diminishes lung metastasis induced by the metastatic HCC cell-derived EVs in mice. In the clinical perspective, analysis of serum EV-NID1 and TNFR1 in HCC patients reveals their positive correlation and association with tumor stages suggesting the potential of these molecules as noninvasive biomarkers for the early detection of HCC. In conclusion, these results demonstrate the interplay of HCC EVs and activated fibroblasts in pre-metastatic niche formation and how blockage of their functions inhibits distant metastasis to the lungs. This study offers promise for the new direction of HCC treatment by targeting oncogenic EV components and their mediated pathways.Polymers are widely used as dielectric components and electrical insulations in modern electronic devices and power systems in the industrial sector, transportation, and large appliances, among others, where electrical damage of the materials is one of the major factors threatening the reliability and service lifetime. Self-healing dielectric polymers, an emerging category of materials capable of recovering dielectric and insulating properties after electrical damage, are of promise to address this issue. This paper aims at summarizing the recent progress in the design and synthesis of self-healing dielectric polymers. The current understanding to the process of electrical degradation and damage in dielectric polymers is first introduced and the critical requirements in the self-healing of electrical damage are proposed. Then the feasibility of using self-healing strategies designed for repairing mechanical damage in the healing of electrical damage is evaluated, based on which the challenges and bottleneck issues are pointed out. The emerging self-healing methods specifically designed for healing electrical damage are highlighted and some useful mechanisms for developing novel self-healing dielectric polymers are proposed. It is concluded by providing a brief outlook and some potential directions in the future development toward practical applications in electronics and the electric power industry.To meet the demands of future intelligent application scenarios, the time-efficient information acquisition and energy-efficient data processing capabilities of terminal electronic systems are indispensable. However, in current commercial visual systems, the visible information is collected by image sensors, converted into digital format data, and transferred to memory units and processors for subsequent processing tasks. As a result, most of the time and energy are wasted in the data conversion and movement, which leads to large time latency and low energy efficiency. Here, based on 2D semiconductor WSe2, a logic-memory transistor that integrates visible information sensing-memory-processing capabilities is successfully demonstrated. Furthermore, based on 3 × 3 fabricated devices, an artificial visible information sensing-memory-processing system is proposed to perform image distinction tasks, in which the time latency and energy consumption caused by data conversion and movement can be avoided. On the other hand, the logic-memory transistor can also execute digital logic processing (logic) and logic results storage (memory) at the same time, such as AND logic function. Such a logic-memory transistor could provide a compact approach to develop next-generation efficient visual systems.Stroke is a leading cause of mortality and disability worldwide, expected to result in 61 million disability-adjusted life-years in 2020. Rapid diagnostics is the core of stroke management for early prevention and medical treatment. Serum metabolic fingerprints (SMFs) reflect underlying disease progression, predictive of patient phenotypes. Deep learning (DL) encoding SMFs with clinical indexes outperforms single biomarkers, while posing challenges with poor prediction to interpret by feature selection. Herein, rapid computer-aided diagnosis of stroke is performed using SMF based multi-modal recognition by DL, to combine adaptive machine learning with a novel feature selection approach. SMFs are extracted by nano-assisted laser desorption/ionization mass spectrometry (LDI MS), consuming 100 nL of serum in seconds. Chloroquine research buy A multi-modal recognition is constructed by integrating SMFs and clinical indexes with an enhanced area under curve (AUC) up to 0.845 for stroke screening, compared to single-modal diagnosis by only SMFs or clinical indexes. The prediction of DL is addressed by selecting 20 key metabolite features with differential regulation through a saliency map approach, shedding light on the molecular mechanisms in stroke. The approach highlights the emerging role of DL in precision medicine and suggests an expanding utility for computational analysis of SMFs in stroke screening.Organic semiconductors (OSCs) promise to deliver next-generation electronic and energy devices that are flexible, scalable and printable. Unfortunately, realizing this opportunity is hampered by increasing concerns about the use of volatile organic compounds (VOCs), particularly toxic halogenated solvents that are detrimental to the environment and human health. Here, a cradle-to-grave process is reported to achieve high performance p- and n-type OSC devices based on indacenodithiophene and diketopyrrolopyrrole semiconducting polymers that utilizes aqueous-processes, fewer steps, lower reaction temperatures, a significant reduction in VOCs (>99%) and avoids all halogenated solvents. The process involves an aqueous mini-emulsion polymerization that generates a surfactant-stabilized aqueous dispersion of OSC nanoparticles at sufficient concentration to permit direct aqueous processing into thin films for use in organic field-effect transistors. Promisingly, the performance of these devices is comparable to those prepared using conventional synthesis and processing procedures optimized for large amounts of VOCs and halogenated solvents.