Tolstruperiksen7952
In a large subset of spines the fluorescence signal had a protracted rise time (average time to peak ∼400 ms, range 20 to >1,000 ms). This slow rise was independent of Ca2 + entry via NMDARs, since similarly slow signals occurred in ΔGluN1 GCs. Additional Ca2 + entry in ΔGluA2 GCs (with AMPARs rendered Ca2 +-permeable), however, resulted in larger ΔF/Fs that rose yet more slowly. Thus GC spines appear to dispose of several local mechanisms to promote asynchronous GABA release, which are reflected in the time course of mitral/tufted cell recurrent inhibition.Enhancing patients' engagement is of great benefit for neural rehabilitation. However, physiological and neurological differences among individuals can cause divergent responses to the same task, and the responses can further change considerably during training; both of these factors make engagement enhancement a challenge. Super-TDU YAP inhibitor This challenge can be overcome by training task optimization based on subjects' responses. To this end, an engagement enhancement method based on human-in-the-loop optimization is proposed in this paper. Firstly, an interactive speed-tracking riding game is designed as the training task in which four reference speed curves (RSCs) are designed to construct the reference trajectory in each generation. Each RSC is modeled using a piecewise function, which is determined by the starting velocity, transient time, and end velocity. Based on the parameterized model, the difficulty of the training task, which is a key factor affecting the engagement, can be optimized. Then, the objective function is designed with consideration to the tracking accuracy and the surface electromyogram (sEMG)-based muscle activation, and the physical and physiological responses of the subjects can consequently be evaluated simultaneously. Moreover, a covariance matrix adaption evolution strategy, which is relatively tolerant of both measurement noises and human adaptation, is used to generate the optimal parameters of the RSCs periodically. By optimization of the RSCs persistently, the objective function can be maximized, and the subjects' engagement can be enhanced. Finally, the performance of the proposed method is demonstrated by the validation and comparison experiments. The results show that both subjects' sEMG-based motor engagement and electroencephalography based neural engagement can be improved significantly and maintained at a high level.The problem of finding stereo correspondences in binocular vision is solved effortlessly in nature and yet it is still a critical bottleneck for artificial machine vision systems. As temporal information is a crucial feature in this process, the advent of event-based vision sensors and dedicated event-based processors promises to offer an effective approach to solving the stereo matching problem. Indeed, event-based neuromorphic hardware provides an optimal substrate for fast, asynchronous computation, that can make explicit use of precise temporal coincidences. However, although several biologically-inspired solutions have already been proposed, the performance benefits of combining event-based sensing with asynchronous and parallel computation are yet to be explored. Here we present a hardware spike-based stereo-vision system that leverages the advantages of brain-inspired neuromorphic computing by interfacing two event-based vision sensors to an event-based mixed-signal analog/digital neuromorphic processor. We describe a prototype interface designed to enable the emulation of a stereo-vision system on neuromorphic hardware and we quantify the stereo matching performance with two datasets. Our results provide a path toward the realization of low-latency, end-to-end event-based, neuromorphic architectures for stereo vision.This article presents an open source software able to convert, display, and process medical images. It differentiates itself from the existing software by its ability to design complex processing pipelines and to wisely execute them on a large databases. An MP3 pipeline can contain unlimited homemade or ready-made processes and can be carried out with a parallel execution system. As a viewer, MP3 allows display of up to four images together and to draw Regions Of Interest (ROI). Two applications showing the strengths of the software are presented as examples a preclinical study involving Magnetic Resonance Imaging (MRI) data and a clinical one involving Computed Tomography (CT) images. MP3 is downloadable at https//github.com/nifm-gin/MP3.In this paper we investigate the active inference framework as a means to enable autonomous behavior in artificial agents. Active inference is a theoretical framework underpinning the way organisms act and observe in the real world. In active inference, agents act in order to minimize their so called free energy, or prediction error. Besides being biologically plausible, active inference has been shown to solve hard exploration problems in various simulated environments. However, these simulations typically require handcrafting a generative model for the agent. Therefore we propose to use recent advances in deep artificial neural networks to learn generative state space models from scratch, using only observation-action sequences. This way we are able to scale active inference to new and challenging problem domains, whilst still building on the theoretical backing of the free energy principle. We validate our approach on the mountain car problem to illustrate that our learnt models can indeed trade-off instrumental value and ambiguity. Furthermore, we show that generative models can also be learnt using high-dimensional pixel observations, both in the OpenAI Gym car racing environment and a real-world robotic navigation task. Finally we show that active inference based policies are an order of magnitude more sample efficient than Deep Q Networks on RL tasks.Acupuncturing the ST36 acupoint can evoke the response of the sensory nervous system, which is translated into output electrical signals in the spinal dorsal root. Neural response activities, especially synchronous spike events, evoked by different acupuncture manipulations have remarkable differences. In order to identify these network collaborative activities, we analyze the underlying spike correlation in the synchronous spike event. In this paper, we adopt a log-linear model to describe network response activities evoked by different acupuncture manipulations. Then the state-space model and Bayesian theory are used to estimate network spike correlations. Two sets of simulation data are used to test the effectiveness of the estimation algorithm and the model goodness-of-fit. In addition, simulation data are also used to analyze the relationship between spike correlations and synchronous spike events. Finally, we use this method to identify network spike correlations evoked by four different acupuncture manipulations.