Gauthierkragh0575
Pomegranate (Punica granatum L.) has been used in traditional herbal medicine by several cultures as an anti-inflammatory, antioxidant, antihyperglycemic, and for treatment and prevention of cancer and other diseases. Different parts of the fruit, extraction methods, and solvents can define the chemical profile of the obtained extracts and their biological activities. This study aimed to characterize the chemical profile of peel extracts collected using different extraction solvents and their biological effects on the cell cycle and apoptosis of THP-1 leukemic cells. Aqueous extract presented the highest content of punicalagins (α pun = 562.26 ± 47.14 mg/L and β pun = 1,251.13 ± 22.21 mg/L) and the lowest content of ellagic acid (66.38 ± 0.21 mg/L), and it promoted a significant impairment of the cell cycle S phase. In fact, punicalagin-enriched fraction, but not an ellagic acid-enriched fraction, caused an S phase cell cycle arrest. All extracts increased the number of apoptotic cells. Punicalagin-enriched fraction increased the percentage of cells with fragmented DNA, which was intensified by ellagic acid combination. The treatment combining punicalagin and ellagic acid fractions increased the apoptotic cleaved PARP1 protein and reduced the activation of the growth-related mTOR pathway. Thus, these results evidence that solvent choice is critical for the phenolic compounds profile of pomegranate peel extracts and their biological activities.To elucidate the impact of potato flour (PF) on quality changes and staling characteristics of the composite bread from wheat-potato flour (WPF), the physicochemical (specific volume, colority, sensory value, texture, and viscosity) properties, and staling (X-ray diffraction and water migration) properties of bread were investigated. The quality of composite bread was comparable to wheat bread when addition level of PF at 20%, but decreased when the addition level increased to 30% or more, and became unacceptable at 50%. A chewy mouthfeel and an elastic and none-crumbly texture were observed on composite bread, which had higher hardness than wheat bread, and could keep on both longer linear distance and higher linear force during compression test. It indicated that such new parameters other than hardness should be introduced to coordinate with the texture quality of composite bread. During storage, the higher addition level of PF significantly decreased crystallinity of composite bread and slowed water migration rate from the crumb to crust, suggesting that PF had antistaling effect on composite bread, which was further emphasized by the fact that the setback value of the WPF decreased with the increase of PF addition.The casting method was employed to prepare gelatin-based nanocomposite films containing different concentrations of cellulose nanofiber (CNF) as a reinforcement filler (2.5%, 5%, and 7.5% w/w of gelatin) as well as zinc oxide nanoparticles (ZnO NPs) as an antimicrobial agent (1%, 3%, 5%, and 7% w/w of gelatin). The results showed that the incorporation of 5% CNFs (optimum concentration) significantly boosted the films' stiffness (YM; by 47%) and strength (TS; by 72%) but decreased its flexibility (EAB; by 28%), water vapor permeability, and moisture absorption. The best G/CNF film antibacterial activity was provided by the 5% concentration of ZnO NPs according to the disk diffusion assay; Gram-positive bacteria were inhibited significantly more than Gram-negative bacteria. The antimicrobial efficacy of the G/CNF/ZnO NPs film as a food packaging material was assessed via counts of Staphylococcus aureus and Pseudomonas fluorescens inoculated on chicken fillets (as a food model) in the treatment (G/5% CNF/5% ZnO) and control groups (plastic bag). The antibacterial film led to a significant reduction in the bacterial load of the chicken fillets (p less then .05), especially against the Gram-positive strain. This study illustrated that G/CNF/ZnO NPs films can be utilized as active packaging to prolong the shelf life of different perishable foods such as meat.Xylo-oligosaccharides (XOS) are nondigestible oligosaccharides (NDO) which are recently authorized as novel food ingredients in European Union. Present study introduces the effect of XOS on baking quality of cookies. Color measurements proved that XOS enhance the caramelization during baking. Texture profile, geometry, and baking loss of cookies showed little changes due to XOS addition indicating that XOS are easy to incorporate into baking products. Based on sensory evaluation by expert panel, it was observed that XOS increased the "baked character" of the cookies as indicated by the increased caramel flavor, darker color, and crispier texture. XOS addition also increased the sweet taste and global taste intensity of cookies suggesting that in bakery products XOS evolve a flavor enhancer role. XOS proved to be a promising new alternative to increase dietary fiber content of cereal-based cookies.Satsuma (Citrus unshiu Marc.) is rich in high levels of nutrients and popular for its unique flavor, but the consumption of satsuma is limited by some adverse reactions in human body. Previous studies have mainly focused on the effects of storage temperature on the postharvest quality of satsumas, and little attention has paid to the effect of postharvest satsumas on human body immunoregulation. The purpose of this study was to explore the differences in fruit quality, and the effect of satsuma fruits stored at different temperatures on human health. Satsumas stored at low temperature (5.8°C, LT) and room temperature (23 ± 2°C, RT) for 60 days were sampled every 10 days to measure the fruit quality. Sixty volunteers were recruited for the oral stimulation experiment of satsumas, and then the effect of satsumas on human health was examined through the immunoregulation of RAW 264.7 macrophages. find more The results showed that compared with RT treatment, LT treatment could delay the degradation of satsuma fruit quality. Both the results of the volunteer experiment and cell experiment indicated that postharvest temperature treatments could reduce the adverse effects of satsuma fruits on human body. These findings indicated that 10-day storage at room temperature plus subsequent storage at low temperature was the optimal treatment to maintain fruit quality and functional components of postharvest satsumas. This study provides useful information on satsuma consumption and research work from the perspective of immunoregulation evaluation.