Denckergordon3948
Histological images are critical in the diagnosis and treatment of cancers. Unfortunately, current methods for capturing these microscopy images require resource intensive tissue preparation that may delay diagnosis for days or weeks. To streamline this process, clinicians are limited to assessing small macroscopically representative subsets of tissues. Here, a combined photoacoustic remote sensing (PARS) microscope and swept source optical coherence tomography system designed to circumvent these diagnostic limitations is presented. The proposed multimodal microscope provides label-free three-dimensional depth resolved virtual histology visualizations, capturing nuclear and extranuclear tissue morphology directly on thick unprocessed specimens. The capabilities of the proposed method are demonstrated directly in unprocessed formalin fixed resected tissues. The first images of nuclear contrast in resected human tissues, and the first three-dimensional visualization of subsurface nuclear morphology in resected Rattus tissues, captured with a non-contact photoacoustic system are presented here. Moreover, the proposed system captures the first co-registered OCT and PARS images enabling direct histological assessment of unprocessed tissues. This work represents a vital step towards the development of a rapid histological imaging modality to circumvent the limitations of current histopathology techniques.Statewide legislation has increased public access to high-potency cannabis flower and concentrates, yet federal restrictions limit researchers' access to relatively low-potency whole-plant cannabis. The goal of this study was to examine the acute effects of high-potency cannabis on cognition using a novel methodology. We further sought to compare cognitive effects of high-potency cannabis flower with and without cannabidiol (CBD), as well as cannabis concentrates to cannabis flower. 80 cannabis users were randomly assigned to stay sober or use their funds to purchase one of three high-potency cannabis products (1) high-potency flower (≥ 20% THC) without CBD, (2) high-potency flower with CBD, (3) high-potency concentrates (≥ 60% THC) with CBD. Participants were observed over Zoom videoconferencing while inhaling their product or remaining sober and then were administered tests of everyday life memory (prospective, source, temporal order, and false memory) and decision making (risky choice framing, consistency in risk perception, resistance to sunk cost, and over/under confidence) over Zoom. IKE modulator High-potency cannabis flower with CBD impaired free recall, high-potency flower without CBD and concentrates had detrimental effects on source memory, and all three products increased susceptibility to false memories. CBD did not offset impairments and concentrates were self-titrated producing comparable intoxication and impairment as flower.Flowering time marks the transition from vegetative to reproductive growth and is key for optimal yield in any crop. The molecular mechanisms controlling this trait have been extensively studied in model plants such as Arabidopsis thaliana and rice. While knowledge on the molecular regulation of this trait is rapidly increasing in sequenced galegoid legume crops, understanding in faba bean remains limited. Here we exploited translational genomics from model legume crops to identify and fine map QTLs linked to flowering time in faba bean. Among the 31 candidate genes relevant for flowering control in A. thaliana and Cicer arietinum assayed, 25 could be mapped in a segregating faba bean RIL population. While most of the genes showed conserved synteny among related legume species, none of them co-localized with the 9 significant QTL regions identified. The FT gene, previously implicated in the control of flowering time in numerous members of the temperate legume clade, mapped close to the most relevant stable and conserved QTL in chromosome V. Interestingly, QTL analysis suggests an important role of epigenetic modifications in faba bean flowering control. The new QTLs and candidate genes assayed here provide a robust framework for further genetic studies and will contribute to the elucidation of the molecular mechanisms controlling this trait.The light chain (AL) amyloidosis is caused by the aggregation of light chain of antibodies into amyloid fibrils. There are plenty of computational resources available for the prediction of short aggregation-prone regions within proteins. However, it is still a challenging task to predict the amyloidogenic nature of the whole protein using sequence/structure information. In the case of antibody light chains, common architecture and known binding sites can provide vital information for the prediction of amyloidogenicity at physiological conditions. Here, in this work, we have compared classical sequence-based, aggregation-related features (such as hydrophobicity, presence of gatekeeper residues, disorderness, β-propensity, etc.) calculated for the CDR, FR or VL regions of amyloidogenic and non-amyloidogenic antibody light chains and implemented the insights gained in a machine learning-based webserver called "VLAmY-Pred" ( https//web.iitm.ac.in/bioinfo2/vlamy-pred/ ). The model shows prediction accuracy of 79.7% (sensitivity 78.7% and specificity 79.9%) with a ROC value of 0.88 on a dataset of 1828 variable region sequences of the antibody light chains. This model will be helpful towards improved prognosis for patients that may likely suffer from diseases caused by light chain amyloidosis, understanding origins of aggregation in antibody-based biotherapeutics, large-scale in-silico analysis of antibody sequences generated by next generation sequencing, and finally towards rational engineering of aggregation resistant antibodies.The pathophysiology of post-hepatectomy liver failure is not entirely understood but is rooted in the disruption of normal hepatocyte regeneration and homeostasis. Current investigations of post-hepatectomy liver failure and regeneration are focused on evaluation of circulating hepatic function parameters (transaminases, cholestasis, and coagulation parameters), volumetry and hepatic hemodynamics. However, identification of biochemical factors associated with regeneration and post hepatectomy liver failure is crucial for understanding the pathophysiology and identification of patients at risk. The objective of the present systematic review was to identify circulating factors associated with liver regeneration and post hepatectomy liver failure in patients undergoing hepatectomy. The quantitative analysis was intended if studies provided sufficient data. Electronic databases (MEDLINE via PubMed, Web of Knowledge, Cochrane Library and WHO International Clinical Trials Registry Platform) were searched for publications on cell signaling factors in liver regeneration and post-hepatectomy liver failure following liver resection in clinical setting.