Ydeknowles3764

Z Iurium Wiki

Verze z 10. 11. 2024, 13:15, kterou vytvořil Ydeknowles3764 (diskuse | příspěvky) (Založena nová stránka s textem „The porous substrates of commercially pure titanium have been coated with a novel bilayer of bioactive glasses (BGs), 45S5 and 1393, to improve the osseoin…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The porous substrates of commercially pure titanium have been coated with a novel bilayer of bioactive glasses (BGs), 45S5 and 1393, to improve the osseointegration and solve the stress-shielding phenomenon of titanium partial implants. The porosity of the substrates and the scratch resistance and bioactivity of the coating have been evaluated. Results are discussed in terms of stiffness and yield strength of the substrates, as well as the chemical composition, thickness, and design of the bioglass coating (monolithic vs bilayer). The role of the pores was a crucial issue in the anchoring of the coating, both in porosity percentage (30 and 60 vol %) and in pore range size (100-200 and 355-500 μm). The study was focused on the adhesion and infiltration of a 1393 bioglass layer (in contact with a porous titanium substrate), in combination with the biofunctionality of the 45S5 bioglass layer (surrounded by the host bone tissue), as 1393 bioglass enhances the adherence, while 45S5 bioglass promotes higher bioactivity. This bioactivity of the raw powder was initially estimated by nuclear magnetic resonance, through the evaluation of the chemical environments, and confirmed by the formation of hydroxyapatite when immersed in a simulated body fluid. The results revealed that the substrate with 30 vol % of porosity and a range of 355-500 μm pore size, coated with this novel BG bilayer, presented the best combination in terms of mechanical and biofunctional properties.Nitrogen (N) is used in many of life's fundamental biomolecules, and it is also a participant in environmental redox chemistry. Biogeochemical processes control the amount and form of N available to organisms ("fixed" N). These interacting processes result in N acting as the proximate limiting nutrient in most surface environments. Here, we review the global biogeochemical cycle of N and its anthropogenic perturbation. We introduce important reservoirs and processes affecting N in the environment, focusing on the ocean, in which N cycling is more generalizable than in terrestrial systems, which are more heterogeneous. Particular attention is given to processes that create and destroy fixed N because these comprise the fixed N input/output budget, the most universal control on environmental N availability. We discuss preindustrial N budgets for terrestrial and marine systems and their modern-day alteration by N inputs from human activities. We summarize evidence indicating that the simultaneous roles of N as a required biomass constituent and an environmental redox intermediate lead to stabilizing feedbacks that tend to blunt the impact of N cycle perturbations at larger spatiotemporal scales, particularly in marine systems. As a result of these feedbacks, the anthropogenic "N problem" is distinct from the "carbon dioxide problem" in being more local and less global, more immediate and less persistent.The precise location of tumor and completeness of surgical resection are critical to successful tumor surgery; thus, the method capable of preoperatively locating a tumor site and intraoperatively determining tumor margins would be highly ideal. Herein, an activatable nanocomposite probe was developed for preoperatively locating orthotopic hepatic tumor via multispectral optoacoustic tomography imaging and for intraoperative navigation via near-IR-1 (NIR-I) and NIR-II fluorescence imaging. The molecular probe comprises an electronic donor, an acceptor, and a recognition moiety and forms the nanocomposite probe with bovine serum albumin. The probe specifically responds to nitroreductase overexpressed in tumor cells, which transforms the aromatic nitro group into an electron-donating amino group and thus activates the probe. The activated probe with the aggregation-induced emission feature generates strong NIR-I/NIR-II fluorescence and optoacoustic signals for dual-mode imaging. Owing to the in situ response toward nitroreductase in tumor cells in the hepatic region, the probe is found capable of detecting early stage orthotopic liver tumors. Furthermore, with the nanocomposite probe, we can obtain the 3D MSOT images to accurately locate orthotopic liver tumors preoperatively and the NIR-I/NIR-II fluorescence images to provide intraoperative guidance for tumor resection surgery.The merits of Li-O2 batteries due to the huge energy density are shadowed by the sluggish kinetics of oxygen redox and massive side reactions caused by conductive carbon and a binder. read more Herein, Fe-Co inverse spinel oxide nanowires grown on Ni foam are fabricated as carbon-free and binder-free cathodes for Li-O2 batteries. Superior high rate cycle durability and deep charge capability are obtained. For example, 300 cycles with a low overpotential under a fixed capacity of 500 mAh g-1 are achieved at a high current density of 500 mA g-1. In the deep discharge/charge mode at 500 mA g-1, the optimized Fe-Co oxide cathode can stably work for more than 30 cycles with the capacity maintained at about 2100 mAh g-1. Owing to the appreciable incorporation of Fe3+ into the surface of stable inverse spinel oxides, the regulated Fe-Co oxide cathodes possess a more stable and higher ratio of Co3+/Co2+, which offers improved adsorption ability of reactive oxygen intermediates and thus achieves the enhanced electrocatalytic performance in the higher current density. In addition, the morphology evolution from array to pyramid-like structure of nanowires further provides assurance in the superior cycle capability. By coupling pyramid-shaped nanowires with binary inverse spinel, the obtained Fe-Co oxide becomes a promising material for practical applications in Li-O2 batteries. This work offers a general strategy to design efficient mixed metal oxide-based electrodes for the critical energy storage fields.Novel MOF-based polymer nanocomposite films were successfully prepared using Zr-based UiO-67 as a metal-organic framework (MOF) and polyurethane (PU) as a polymeric matrix. Synchrotron X-ray powder diffraction (SXRPD) analysis confirms the improved stability of the UiO-67 embedded nanocrystals, and scanning electron microscopy images confirm their homogeneous distribution (average crystal size ∼100-200 nm) within the 50 μm thick film. Accessibility to the inner porous structure of the embedded MOFs was completely suppressed for N2 at cryogenic temperatures. However, ethylene adsorption measurements at 25 °C confirm that at least 45% of the MOF crystals are fully accessible for gas-phase adsorption of nonpolar molecules. Although this partial blockage limits the adsorption performance of the embedded MOFs for ocular drugs (e.g., brimonidine tartrate) compared to the pure MOF, an almost 60-fold improvement in the adsorption capacity was observed for the PU matrix after incorporation of the UiO-67 nanocrystals. The UiO-67@PU nanocomposite exhibits a prolonged release of brimonidine (up to 14 days were quantified).

Autoři článku: Ydeknowles3764 (McFadden Svenstrup)