Lindahlklit4548
The underlying physics governing the diffusion of a tracer particle in a viscoelastic material is a topic of some dispute. The long-term memory in the mechanical response of such materials should induce diffusive motion with a memory kernel, such as fractional Brownian motion (fBM). This is the reason that microrheology is able to provide the shear modulus of polymer networks. Surprisingly, the diffusion of a tracer particle in a network of a purified protein, actin, was found to conform to the continuous time random walk type (CTRW). We set out to resolve this discrepancy by studying the tracer particle diffusion using two different tracer particle sizes, in actin networks of different mesh sizes. We find that the ratio of tracer particle size to the characteristic length scale of a bio-polymer network plays a crucial role in determining the type of diffusion it performs. We find that the diffusion of the tracer particles has features of fBm when the particle is large compared to the mesh size, of normal diffusion when the particle is much smaller than the mesh size, and of the CTRW in between these two limits. Based on our findings, we propose and verify numerically a new model for the motion of the tracer in all regimes. Our model suggests that diffusion in actin networks consists of fBm of the tracer particle coupled with caging events with power-law distributed escape times.Dissipative self-assembly, a ubiquitous type of self-assembly in biological systems, has attracted a lot of attention in recent years. Inspired by nature, dissipative self-assembly driven by periodic external fields is often adopted to obtain controlled out-of-equilibrium steady structures and materials in experiments. Although the phenomena in dissipative self-assembly have been discovered in the past few decades, fundamental methods to describe dynamical self-assembly processes and responsiveness are still lacking. Here, we develop a theoretical framework based on the equations of motion and Floquet theory to reveal the dynamic behavior changing with frequency in the periodic external field driven self-assembly. Using the dissipative particle dynamics simulation method, we then construct a block copolymer model that can self-assemble in dilute solution to confirm the conclusions from the theory. Our theoretical framework facilitates the understanding of dynamic behavior in a periodically driven process and provides the theoretical guidance for designing the dissipative conditions.Generalization of an earlier reduced-density-matrix-based vibrational assignment algorithm is given, applicable for systems exhibiting both large-amplitude motions, including tunneling, and degenerate vibrational modes. The algorithm developed is used to study the structure of the excited vibrational wave functions of the ammonia molecule, 14NH3. Characterization of the complex dynamics of systems with several degenerate vibrations requires reconsidering the traditional degenerate-mode description given by vibrational angular momentum quantum numbers and switching to a symmetry-based approach that directly predicts state degeneracy and uncovers relations between degenerate modes. Out of the 600 distinct vibrational eigenstates of ammonia obtained by a full-dimensional variational computation, the developed methodology allows for the assignment of about 500 with meaningful labels. This study confirms that vibrationally excited states truly have modal character recognizable up to very high energies even for the non-trivial case of ammonia, a molecule which exhibits a tunneling motion and has two two-dimensional normal modes. The modal characteristics of the excited states and the interplay of the vibrational modes can be easily visualized by the reduced-density matrices, giving an insight into the complex modal behavior directed by symmetry.With the emergence of hydrophobic deep eutectic solvents (DESs), the scope of applications of DESs has been expanded to include situations in which miscibility with water is undesirable. Whereas most studies have focused on the applications of hydrophobic DESs from a practical standpoint, few theoretical works exist that investigate the structural and thermodynamic properties at the nanoscale. In this study, Molecular Dynamics (MD) simulations have been performed to model DESs composed of tetraalkylammonium chloride hydrogen bond acceptor and decanoic acid hydrogen bond donor (HBD) at a molar ratio of 12, with three different cation chain lengths (4, 7, and 8). After fine-tuning force field parameters, densities, viscosities, self-diffusivities, and ionic conductivities of the DESs were computed over a wide temperature range. The liquid structure was examined using radial distribution functions (RDFs) and hydrogen bond analysis. The MD simulations reproduced the experimental density and viscosity data from the literature reasonably well and were used to predict diffusivities and ionic conductivities, for which experimental data are scarce or unavailable. It was found that although an increase in the cation chain length considerably affected the density and transport properties of the DESs (i.e., yielding smaller densities and slower dynamics), no significant influence was observed on the RDFs and the hydrogen bonds. The self-diffusivities showed the following order for the mobility of the various components HBD > anion > cation. see more Strong hydrogen bonds between the hydroxyl and carbonyl groups of decanoic acid and between the hydroxyl group of decanoic acid and chloride were observed to dominate the intermolecular interactions.Octyl methoxycinnamate (2-ethylhexyl 4-methoxycinnamate, OMC) is a commercial sunscreen known as octinoxate with excellent UVB filter properties. However, it is known to undergo a series of photodegradation processes that decrease its effectiveness as a UVB filter. In particular, the trans (E) form-which is considered so far as the most stable isomer-converts to the cis (Z) form under the effect of light. In this work, by using post-Hartree-Fock approaches [CCSD, CCSD(t), and CCSD + T(CCSD)] on ground state OMC geometries optimized at the MP2 level, we show that the cis and trans forms of the gas-phase OMC molecule have comparable stability. Test calculations on the same structures with a series of dispersion-corrected density functional theory-based approaches including the B2PLYP double hybrid predict the trans structures to be energetically favored, missing the subtle stabilization of cis-OMC. Our results suggest that the cis form is stabilized by intra-molecular dispersion interactions, leading to a folded more compact structure than the trans isomer.