Hughesrobbins1666
The bulbil is an important vegetative reproductive organ in triploid Lilium lancifolium whose development is promoted by cytokinins. Type-B response regulators (RRs) are critical regulators that mediate primary cytokinin responses and promote cytokinin-induced gene expression. However, the function of cytokinin type-B Arabidopsis RRs (ARRs) in regulating bulbil formation is unclear. In this study, we identified five type-B LlRRs, LlRR1, LlRR2, LlRR10, LlRR11 and LlRR12, in L. lancifolium for the first time. The five LlRRs encode proteins of 715, 675, 573, 582 and 647 amino acids. click here All of the regulators belong to the B-I subfamily, whose members typically contain a conserved CheY-homologous receiver (REC) domain and an Myb DNA-binding (MYB) domain at the N-terminus. As transcription factors, all five type-B LlRRs localize at the nucleus and are widely expressed in plant tissues, especially during axillary meristem (AM) formation. Functional analysis showed that type-B LlRRs are involved in bulbil formation in a functionally redundant manner and can activate LlRR9 expression. In summary, our study elucidates the process by which cytokinins regulate bulbil initiation in L. lancifolium through type-B LlRRs and lays a foundation for research on the molecular mechanism of bulbil formation in the lily.Chemo-resistance hinders treatment of patients with hepatocellular carcinoma. Although there are many models that can be found in the literature, the root mechanism to explain chemo-resistance is still not fully understood. To gain a better understanding of this phenomenon, a chemo-resistant line, R-HepG2, was developed from a chemo-sensitive HepG2 line through an exposure of doxorubicin (DOX). The R-HepG2 exhibited a cancer stem cell (CSC) phenotype with an over-expression of P-glycoprotein (P-gp), conferring it a significant enhancement in drug efflux and survival. With these observations, we hypothesize that metabolic alteration in this drug-resistant CSC is the root cause of chemo-resistance. Our results show that, unlike other metabolic-reprogrammed CSCs that exhibit glycolytic phenotype described by the "Warburg effect", the R-HepG2 was metabolically quiescent with glucose independence, high metabolic plasticity, and relied on glutamine metabolism via the mitochondria for its chemo-resistance Intriguingly, drug efflux by P-gp in R-HepG2 depended on the mitochondrial ATP fueled by glutamine instead of glycolytic ATP. Armed with these observations, we blocked the glutamine metabolism in the R-HepG2 and a significant reduction of DOX efflux was obtained. We exploited this metabolic vulnerability using a combination of DOX and metformin in a glutamine-free condition to target the R-HepG2, resulting in a significant DOX sensitization. In conclusion, our findings highlight the metabolic modulation of chemo-resistance in CSCs. We delineate the altered metabolism that drives chemo-resistance and offer a new approach to target this CSC through metabolic interventions.Various high-performance anode and cathode materials, such as lithium carbonate, lithium titanate, cobalt oxides, silicon, graphite, germanium, and tin, have been widely investigated in an effort to enhance the energy density storage properties of lithium-ion batteries (LIBs). However, the structural manipulation of anode materials to improve the battery performance remains a challenging issue. In LIBs, optimization of the anode material is a key technology affecting not only the power density but also the lifetime of the device. Here, we introduce a novel method by which to obtain nanostructures for LIB anode application on various surfaces via nanotransfer printing (nTP) process. We used a spark plasma sintering (SPS) process to fabricate a sputter target made of Li2CO3, which is used as an anode material for LIBs. Using the nTP process, various Li2CO3 nanoscale patterns, such as line, wave, and dot patterns on a SiO2/Si substrate, were successfully obtained. Furthermore, we show highly ordered Li2CO3 nanostructures on a variety of substrates, such as Al, Al2O3, flexible PET, and 2-Hydroxylethyl Methacrylate (HEMA) contact lens substrates. It is expected that the approach demonstrated here can provide new pathway to generate many other designable structures of various LIB anode materials.Transient receptor potential ankyrin 1 (TRPA1) is an ion channel mainly studied in sensory neurons where it mediates itch, pain and neurogenic inflammation. Recently, some nonneuronal cells have also been shown to express TRPA1 to support inflammatory responses. To address the role of TRPA1 in skin inflammation, we aimed to investigate TRPA1 expression in keratinocytes. HaCaT cells (a model of human keratinocytes) and skin biopses from wild-type and TRPA1 deficient mice were used in the studies. TRPA1 expression in nonstimulated keratinocytes was very low but significantly inducible by the proinflammatory cytokine tumor necrosis factor (TNF) in an nuclear factor kappa B (NF-κB), and mitogen-activated protein (MAP) kinase (p38 and c-Jun N-terminal kinase, JNK)-dependent manner. Interestingly, drugs widely used to treat skin inflammation, the calcineurin inhibitors tacrolimus and cyclosporine and the glucocorticoid dexamethasone, significantly decreased TRPA1 expression. Furthermore, pharmacological inhibition and genetic deletion of TRPA1 reduced the synthesis of TNF-induced monocyte chemoattractant protein 1 (MCP-1) in keratinocytes and mouse skin biopsies. In conclusion, these findings point to an inflammatory role for TRPA1 in keratinocytes and present TRPA1 as a potential drug target in inflammatory skin diseases.It is sometimes essential to have an animal in the hand to study some of their ecological and biological characteristics. However, capturing a solitary, cryptic, elusive arboreal species such as the red panda in the wild is challenging. We developed and successfully tested a protocol for tracking, trapping, immobilization, and handling of red pandas in the wild in eastern Nepal. We established a red panda sighting rate of 0.89 panda/day with a capture success rate of 0.6. We trapped and collared one animal in 3.7 days. On average, we took nearly 136 (range 50-317) min to capture an animal after spotting it. Further processing was completed in 38.5 (21-70) min. Before capture, we found it difficult to recognize the sex of the red panda and to differentiate sub-adults above six months from adults. However, body weight, body length, tail length, shoulder height, and chest girth can be used for diagnosis, as these attributes are smaller in sub-adults. Our method is a welfare-friendly way of trapping and handling wild red pandas.