Hardisonmorse6566

Z Iurium Wiki

Verze z 8. 11. 2024, 20:49, kterou vytvořil Hardisonmorse6566 (diskuse | příspěvky) (Založena nová stránka s textem „Genetic factors play a significant but complex role in antidepressant (AD) response and tolerability. During recent years, there is growing enthusiasm in t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Genetic factors play a significant but complex role in antidepressant (AD) response and tolerability. During recent years, there is growing enthusiasm in the promise of pharmacogenetic/pharmacogenomic (PGx) tools for optimizing and personalizing treatment outcomes for patients with major depressive disorder (MDD). The influence of pharmacokinetic and pharmacodynamic genes on response and tolerability has been investigated, including those encoding the cytochrome P450 superfamily, P-glycoprotein, monoaminergic transporters and receptors, intracellular signal transduction pathways, and the stress hormone system. Genome-wide association studies are also identifying new genetic variants associated with AD response phenotypes, which, combined with methods such as polygenic risk scores (PRS), is opening up new avenues for novel personalized treatment approaches for MDD. This chapter describes the basic concepts in PGx of AD response, reviews the major pharmacokinetic and pharmacodynamic genes involved in AD outcome, discusses PRS as a promising approach for predicting AD efficacy and tolerability, and addresses key challenges to the development and application of PGx tests.The research of depression genetics has been occupied by historical candidate genes which were tested by candidate gene association studies. LY 3200882 nmr However, these studies were mostly not replicable. Thus, genetics of depression have remained elusive for a long time. As research moves from candidate gene association studies to GWAS, the hypothesis-free non-candidate gene association studies in genome-wide level, this trend will likely change. Despite the fact that the earlier GWAS of depression were not successful, the recent GWAS suggest robust findings for depression genetics. These altogether will catalyze a new wave of multidisciplinary research to pin down the neurobiology of depression.Depression is heterogeneous and complex disease with diverse symptoms. Its neurobiological underpinning is still not completely understood. For now, there are still no validated, easy obtainable, clinically useful noninvasive biomarker(s) or biomarker panel that will be able to confirm a diagnosis of depression, its subtypes and improve diagnostic procedures. Future multimodal preclinical and clinical research that involves (epi)genetic, molecular, cellular, imaging, and other studies is necessary to advance our understanding of the role of monoamines, GABA, HPA axis, neurotrophins, metabolome, and glycome in the pathogenesis of depression and their potential as diagnostic, prognostic, and treatment response biomarkers. These studies should be focused to include the first-episode depression and antidepressant drug-naïve patients with large sample sizes to reduce variability in different biological and clinical parameters. At present, metabolomics study revealed with high precision that a neurometabolite panel consisting of plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) might represent clinically useful biomarkers of MDD.The neurochemical model of depression, based on monoaminergic theories, does not allow on its own to understand the mechanism of action of antidepressants. This approach does not explain the gap between the immediate biochemical modulations induced by antidepressants and the time required for their clinical action. Several hypotheses have been developed to try to explain more precisely the action of these molecules, each of them involving mechanisms of receptor regulation. At the same time, data on the neuroanatomy of depression converge toward the existence of specific lesions of this pathology. This chapter aims to provide an overview of recent advances in understanding the mechanisms of neural plasticity involved in pathophysiology depression and in its treatment.In the last three decades, the robust scientific data emerged, demonstrating that the immune-inflammatory response is a fundamental component of the pathophysiology of major depressive disorder (MDD). Psychological stress and various inflammatory comorbidities contribute to such immune activation. Still, this is not uncommon that patients with depression do not have defined inflammatory comorbidities, and alternative mechanisms of immune activation need to take place. The gastrointestinal (GI) tract, along with gut-associated lymphoid tissue (GALT), constitutes the largest lymphatic organ in the human body and forms the biggest surface of contact with the external environment. It is also the most significant source of bacterial and food-derived antigenic material. There is a broad range of reciprocal interactions between the GI tract, intestinal microbiota, increased intestinal permeability, activation of immune-inflammatory response, and the CNS that has crucial implications in brain function and mental health. This intercommunication takes place within the microbiota-gut-immune-glia (MGIG) axis, and glial cells are the main orchestrator of this communication. A broad range of factors, including psychological stress, inflammation, dysbiosis, may compromise the permeability of this barrier. This leads to excessive bacterial translocation and the excessive influx of food-derived antigenic material that contributes to activation of the immune-inflammatory response and depressive psychopathology. This chapter summarizes the role of increased intestinal permeability in MDD and mechanisms of how the "leaky gut" may contribute to immune-inflammatory response in this disorder.Exposure to early life stress (ELS) represents a major risk factor for the development of psychiatric disorders, including depression. The susceptibility associated with ELS may result from persistent changes in gene transcription, which can occur through epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNA expression. Animal models and reports in humans described that negative stimuli can alter the neurodevelopment of an individual, affecting their behavior and cognitive development. It is currently hypothesized that levels of environmental adversity in this early developmental period are able to shape the experience-dependent maturation of stress-regulating pathways leading to long-lasting alterations in stress responsivity during adulthood. Here, we review key findings from animal and clinical studies examining the effects of prenatal and postnatal environment in shaping development of the neuroendocrine regulation of stress and the role of epigenetic mechanisms in the predisposition of depression.

Autoři článku: Hardisonmorse6566 (Glass Riley)