Engelfrye8216

Z Iurium Wiki

Verze z 8. 11. 2024, 19:39, kterou vytvořil Engelfrye8216 (diskuse | příspěvky) (Založena nová stránka s textem „In recent years, increasing evidence regarding the functional importance of lipid droplets (LDs), cytoplasmic storage organelles in the central nervous sys…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In recent years, increasing evidence regarding the functional importance of lipid droplets (LDs), cytoplasmic storage organelles in the central nervous system (CNS), has emerged. Although not abundantly present in the CNS under normal conditions in adulthood, LDs accumulate in the CNS during development and aging, as well as in some neurologic disorders. LDs are actively involved in cellular lipid turnover and stress response. By regulating the storage of excess fatty acids, cholesterol, and ceramides in addition to their subsequent release in response to cell needs and/or environmental stressors, LDs are involved in energy production, in the synthesis of membranes and signaling molecules, and in the protection of cells against lipotoxicity and free radicals. Accumulation of LDs in the CNS appears predominantly in neuroglia (astrocytes, microglia, oligodendrocytes, ependymal cells), which provide trophic, metabolic, and immune support to neuronal networks. Here we review the most recent findings on the characteristics and functions of LDs in neuroglia, focusing on astrocytes, the key homeostasis-providing cells in the CNS. We discuss the molecular mechanisms affecting LD turnover in neuroglia under stress and how this may protect neural cell function. We also highlight the role (and potential contribution) of neuroglial LDs in aging and in neurologic disorders.A rapid and high throughput protocol to measure the catalase activity in vitro has been designed. Catalase is an enzyme with unusual kinetic properties because it does not follow the standard Michaelis-Menten model and is inactivated by H2O2. This makes the analysis of the two rate equations of the second-ordered reactions of the kinetic model rather complex. A two-degree polynomial fitting of the experimental data is proposed after transforming the exponential form of the integrated rate equation of the [H2O2] into a polynomial using the Taylor series. The fitting is validated by establishing an experimental linear relationship between the initial rate of the H2O2 decomposition and the protein concentration, regardless of the suicide inactivation that catalase might undergo beyond t > 0. In addition, experimental considerations are taken into account to avoid statistical bias in the analysis of the catalase activity. ANOVA analyses show that the proposed protocol can be utilized to measure the initial rate of the H2O2 decomposition by catalase in 32 samples in triplicates if kept below 8 mM min-1 in the microplate wells. These kinetic and statistical analyses can pave the way for other antioxidant enzyme activity assays in microplate readers at small scale and low cost.The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.Because sewage sludge is contaminated with heavy metals, its disposal in the soil may pose risks to the ecosystem. Thus, heavy metal remediation is necessary to reduce the associated risks. The goal of this research is to introduce a heavy metal resistant species and to assess its phytoremediation, oxidative damage markers and stress tolerance mechanisms. To this end, field research was done to compare the vegetation of polluted sites to that of a healthy site. We found 42 plant species identified in the study, Sesuvium portulacastrum L. was chosen because of its high relative density (10.3) and maximum frequency (100 percent) in the most contaminated areas. In particular, S. portulacastrum plants were characterized by strong Cu, Ni, and As uptake. At the organ level, to control growth reduction and oxidase damage, particularly in roots, increased detoxification (e.g., metallothionein, phytochelatins) and antioxidants mechanisms (e.g., tocopherols, glutathione, peroxidases). On the other hand, flavonoids content and the activity of glutathione-S transferase, glutathione reductase and dehydroascorbate reductase were increased manly in the shoots. These biochemical markers can be applied to select tolerance plant species grown under complex heavy metal contamination. Our findings also introduced S. portulacastrum to reduce soil contamination0associated risks, making the land resource available for agricultural production.Artemisia judaica L. (Family Asteraceae) exhibited antioxidant, anti-inflammatory, and antiapoptotic effects. The in vitro cytotoxic activity of A. judaica ethanolic extract was screened against a panel of cancer cell lines. The results revealed its cytotoxic activity against a lung cancer (A549) cell line with a promising IC50 of 14.2 μg/mL compared to doxorubicin as a standard. This was confirmed through the downregulation of antiapoptotic genes, the upregulation of proapoptotic genes, and the cell cycle arrest at the G2/M phase. Further in vivo study showed that a solid tumor mass was significantly reduced, with a tumor inhibition ratio of 54% relative to doxorubicin therapy in a Xenograft model. From a chemical point of view, various classes of natural products have been identified by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The docking study of the detected metabolites approved their cytotoxic activity through their virtual binding affinity towards the cyclin-dependent kinase 2 (CDK-2) and epidermal growth factor receptor (EGFR) active sites. Finally, A. judaica is a fruitful source of polyphenols that are well-known for their antioxidant and cytotoxic activities. As such, the previously reported polyphenols with anti-lung cancer activity were quantified by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). Rutin, quercetin, kaempferol, and apigenin were detected at concentrations of 6 mg/gm, 0.4 mg/gm, 0.36 mg/gm, and 3.9 mg/gm of plant dry extract, respectively. It is worth noting that kaempferol and rutin are reported for the first time. Herein, A. judaica L. may serve as an adjuvant therapy or a promising source of leading structures in drug discovery for lung cancer treatment.Carotenoids have potential antioxidant and anti-inflammatory effects; their protective roles are of particular interest in the pathogenesis of metabolic syndrome (MetS). The reflection spectroscopy method has been recently developed to noninvasively measure skin carotenoid (SC) levels, which highly correlates with serum concentration of carotenoids. The relationship between SC levels and metabolic syndrome has been investigated. We aimed to identify the differences in patient characteristics and SC levels between participants with and without MetS in a large health examination population. In addition, the relationships between SC levels and various clinical parameters related to MetS were investigated. SC levels were measured using a reflection spectroscopy. A total of 1812 Japanese participants (859 male, 953 female; mean age ± standard deviation (SD), 57.8 ± 11.0 years) comprised the study population, i.e., participants with MetS (n = 151) and those without MetS (n = 1661). Multivariate logistic regression pulation.Lactobacilli are well-studied bacteria that can undergo oxidative selective pressures by plant phenolic compounds (PPCs) in plants, during some food fermentations or in the gastrointestinal tract of animals via dietary inputs. Lactobacilli are known to be more tolerant to PPCs than other bacterial groups and, therefore, must have mechanisms to cope with the effects of these metabolites. In this review, we intend to present what is currently known about the basics beyond the responses of Lactobacillus spp. to individual PPCs. We review the molecular mechanisms that are engaged in the PPC-modulated responses studied to date in these bacteria that have been mainly characterized by system-based strategies, and we discuss their differences and similarities. A wide variety of mechanisms are induced to increase the oxidative stress response highlighting the antimicrobial nature of PPCs. However other uncovered mechanisms that are involved in the response to these compounds are reviewed, including the capacity of PPCs to modulate the expression of molecular functions used by lactobacilli to adapt to host environments. This shows that these phytochemicals can act as more than just antimicrobial agents in the dual interaction with lactobacilli.Modified atmosphere packaging (MAP) has been widely known to delay the postharvest fruit senescence; nevertheless, its effect on antioxidant activity and cell wall metabolism of wolfberry fruit is largely unknown. The present study investigated the impact of elevated CO2 on the quality attributes and cell wall degradation of wolfberry fruit during storage. The results showed that 10% CO2 better maintained the physiological quality and conferred the reduction in weight loss, decay index, and color change. Higher 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-1-picrylhydrazil (DPPH) radical scavenging activity, total phenol and flavonoid content, and superoxide dismutase (SOD) and catalase (CAT) activity of wolfberry were detected at elevated CO2 concentrations. Elevated CO2 atmosphere contributed to the maintenance of the cell integrity, the decrease of cell wall degradation (polygalacturonase, pectate lyase, cellulase, and β-glucosidase), and the increase of cellulose and proto pectin content. Overall, we revealed the potential mechanism of elevated CO2 on the antioxidant activity enhancement and cell wall homeostasis of fresh berry fruit.Chronic kidney disease (CKD) is the progressive loss of renal function and the leading cause of end-stage renal disease (ESRD). Despite optimal therapy, many patients progress to ESRD and require dialysis or transplantation. The pathogenesis of CKD involves inflammation, kidney fibrosis, and blunted renal cellular antioxidant capacity. In this review, we have focused on in vitro and in vivo experimental and clinical studies undertaken to investigate the mechanistic pathways by which these compounds exert their effects against the progression of CKD, particularly diabetic nephropathy and kidney fibrosis. The accumulated and collected data from preclinical and clinical studies revealed that these plants/bioactive compounds could activate autophagy, increase mitochondrial bioenergetics and prevent mitochondrial dysfunction, act as modulators of signaling pathways involved in inflammation, oxidative stress, and renal fibrosis. Etrasimod The main pathways targeted by these compounds include the canonical nuclear factor kappa B (NF-κB), canonical transforming growth factor-beta (TGF-β), autophagy, and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid factor 2-related factor 2 (Nrf2)/antioxidant response element (ARE).

Autoři článku: Engelfrye8216 (Godfrey Basse)