Adkinsfagan9946
Our findings provide critical molecular insight into ECT2-mediated regulation of rDNA transcription in cancer cells and offer a rationale for therapeutic targeting of UBF1- and ECT2-stimulated rDNA transcription for the management of NSCLC. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Z-DNA-binding protein 1 (ZBP1) is an innate immune sensor of nucleic acids that regulates both host defense responses and development. ZBP1 activation triggers inflammation and pyroptosis, necroptosis, and apoptosis (PANoptosis) by activating receptor-interacting Ser/Thr kinase 3 (RIPK3), caspase-8, and the NLRP3 inflammasome. ZBP1 is unique among innate immune sensors because of its N-terminal Zα1 and Zα2 domains, which bind to nucleic acids in the Z-conformation. However, the specific role of these Zα domains in orchestrating ZBP1 activation and subsequent inflammation and cell death is not clear. Here we generated Zbp1ΔZα2/ΔZα2 mice that express ZBP1 lacking the Zα2 domain and demonstrate that this domain is critical for influenza A virus (IAV)-induced PANoptosis and underlies the perinatal lethality in mice in which the RHIM domain of RIPK1 had been mutated (Ripk1mRHIM/mRHIM). Deletion of the Zα2 domain in ZBP1 abolished IAV-induced PANoptosis and NLRP3 inflammasome activation. Furthermore, deletion of the Zα2 domain of ZBP1 was sufficient to rescue Ripk1mRHIM/mRHIM mice from the perinatal lethality which is caused by ZBP1-driven cell death and inflammation. Our findings identify the essential role of the Zα2 domain of ZBP1 in several physiological functions and establish a link between Z-RNA sensing via the Zα2 domain and the promotion of influenza-induced PANoptosis and perinatal lethality. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.The Ser/Thr protein kinase MELK (maternal embryonic leucine zipper kinase) has been considered an attractive therapeutic target for managing cancer since 2005. Studies using expression analysis have indicated that MELK expression is higher in numerous cancer cells and tissues than in their normal, non-neoplastic counterparts. Further, RNAi-mediated MELK depletion impairs proliferation of multiple cancers, including triple-negative breast cancer (TNBC), and these growth defects can be rescued with exogenous wild-type MELK, but not kinase-dead MELK complementation. Pharmacological MELK inhibition with OTS167 (alternatively called OTSSP167) and NVS-MELK8a, among other small molecules, also impairs cancer cell growth. These collective results led to MELK being classified as essential for cancer proliferation. More recently, in 2017, the proliferation of TNBC and other cancer cell lines was reported to be unaffected by genetic CRISPR/Cas9-mediated MELK deletion, calling into question the essentiality of this kinase in cancer. To date, the requirement of MELK in cancer remains controversial, and mechanisms underlying the disparate growth effects observed with RNAi, pharmacological inhibition, and CRISPR remain unclear. Our objective with this review is to highlight the evidence on both sides of this controversy, to provide commentary on the purported requirement of MELK in cancer, and to emphasize the need for continued elucidation of the functions of MELK. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta. Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. Besides KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1-KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1-KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1-KWL1 complex. We found that upon U. read more maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are co-expressed exclusively in oocytes throughout most of folliculogenesis and play central roles in controlling ovarian physiology. Although both growth factors exist as homodimers, recent evidence indicates that GDF9 and BMP15 can also heterodimerize to form the potent growth factor cumulin. Within the cumulin complex, BMP15 "activates" latent GDF9, enabling potent signaling in granulosa cells via type I receptors (i.e., activin receptor-like kinase-4/5 [ALK4/5]) and SMAD2/3 transcription factors. In the cumulin heterodimer, two distinct type I receptor interfaces are formed compared with homodimeric GDF9 and BMP15. Previous studies have highlighted the potential of cumulin to improve treatment of female infertility, but, as a non-covalent heterodimer, cumulin is difficult to produce and purify without contaminating GDF9 and BMP15 homodimers. In this study we addressed this challenge by focusing on the cumulin interface formed by the helix of the GDF9 chain and the fingers of the BMP15 chain.