Ellingtonpape6446

Z Iurium Wiki

Verze z 8. 11. 2024, 17:02, kterou vytvořil Ellingtonpape6446 (diskuse | příspěvky) (Založena nová stránka s textem „The protein-ligand residence time, τ, influences molecular function in biological networks and has been recognized as an important determinant of drug eff…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The protein-ligand residence time, τ, influences molecular function in biological networks and has been recognized as an important determinant of drug efficacy. To predict τ, computational methods must overcome the problem that τ often exceeds the timescales accessible to conventional molecular dynamics (MD) simulation. Here, we apply the τ-Random Acceleration Molecular Dynamics (τRAMD) method to a set of kinetically characterized complexes of T4 lysozyme mutants with small, engineered binding cavities. τRAMD yields relative ligand dissociation rates in good accordance with experiments across this diverse set of complexes that differ with regard to measurement temperature, ligand identity, protein mutation and binding cavity. τRAMD thereby allows a comprehensive characterization of the ligand egress routes and determinants of τ. Although ligand dissociation by multiple egress routes is observed, we find that egress via the predominant route determines the value of τ. We also find that the presence of a greater number of metastable states along egress pathways leads to slower protein-ligand dissociation. These physical insights could be exploited in the rational optimization of the kinetic properties of drug candidates.Female mosquitoes require blood meals for egg development. The saliva of blood feeding arthropods contains biochemically active molecules, whose anti-hemostatic and anti-inflammatory properties facilitate blood feeding on vertebrate hosts. While transcriptomics has presented new opportunities to investigate the diversity of salivary proteins from hematophagous arthropods, many of these proteins remain functionally undescribed. Previous transcriptomic analysis of female salivary glands from Culex quinquefasciatus, an important vector of parasitic and viral infections, uncovered a 12-member family of putatively secreted proteins of unknown function, named the Cysteine and Tryptophan-Rich (CWRC) proteins. Here, we present advances in the characterization of two C. quinquefasciatus CWRC family members, CqDVP-2 and CqDVP-4, including their enrichment in female salivary glands, their specific localization within salivary gland tissues, evidence that these proteins are secreted into the saliva, and their native crysthe first solved crystal structures of C. quinquefasciatus salivary proteins with unknown function. These two molecules are the second and third structures reported from salivary proteins from C. quinquefasciatus, an important, yet understudied disease vector.Membrane proteins (MPs) constitute a large fraction of the proteome, but exhibit physicochemical characteristics that impose challenges for successful sample production crucial for subsequent biophysical studies. In particular, MPs have to be extracted from the membranes in a stable form. Reconstitution into detergent micelles represents the most common procedure in recovering MPs for subsequent analysis. n-dodecyl-β-D-maltoside (DDM) remains one of the most popular conventional detergents used in production of MPs. Here we characterize the novel DDM analogue 4-trans-(4-trans-propylcyclohexyl)-cyclohexyl α-maltoside (t-PCCαM), possessing a substantially lower critical micelle concentration (CMC) than the parental compound that represents an attractive feature when handling MPs. Using three different types of MPs of human and prokaryotic origin, i.e., a channel, a primary and a secondary active transporter, expressed in yeast and bacterial host systems, respectively, we investigate the performance of t-PCCαM in solubilization and affinity purification together with its capacity to preserve native fold and activity. Strikingly, t-PCCαM displays favorable behavior in extracting and stabilizing the three selected targets. Importantly, t-PCCαM promoted extraction of properly folded protein, enhanced thermostability and provided negatively-stained electron microscopy samples of promising quality. All-in-all, t-PCCαM emerges as competitive surfactant applicable to a broad portfolio of challenging MPs for downstream structure-function analysis.Epoxide hydrolases catalyze the conversion of epoxides to vicinal diols in a range of cellular processes such as signaling, detoxification, and virulence. These enzymes typically utilize a pair of tyrosine residues to orient the substrate epoxide ring in the active site and stabilize the hydrolysis intermediate. A new subclass of epoxide hydrolases that utilize a histidine in place of one of the tyrosines was established with the discovery of the CFTR Inhibitory Factor (Cif) from Pseudomonas aeruginosa. Although the presence of such Cif-like epoxide hydrolases was predicted in other opportunistic pathogens based on sequence analyses, only Cif and its homolog aCif from Acinetobacter nosocomialis have been characterized. Here we report the biochemical and structural characteristics of Cfl1 and Cfl2, two Cif-like epoxide hydrolases from Burkholderia cenocepacia. Cfl1 is able to hydrolyze xenobiotic as well as biological epoxides that might be encountered in the environment or during infection. In contrast, Cfl2 shows very low activity against a diverse set of epoxides. The crystal structures of the two proteins reveal quaternary structures that build on the well-known dimeric assembly of the α/β hydrolase domain, but broaden our understanding of the structural diversity encoded in novel oligomer interfaces. Analysis of the interfaces reveals both similarities and key differences in sequence conservation between the two assemblies, and between the canonical dimer and the novel oligomer interfaces of each assembly. Finally, we discuss the effects of these higher-order assemblies on the intra-monomer flexibility of Cfl1 and Cfl2 and their possible roles in regulating enzymatic activity.Integral membrane proteins (IMPs) constitute ~30% of all proteins encoded by the genome of any organism and Escherichia coli remains the first-choice host for recombinant production of prokaryotic IMPs. However, the expression levels of prokaryotic IMPs delivered by this bacterium are often low and overproduced targets often accumulate in inclusion bodies. The targets are therefore often discarded to avoid an additional and inconvenient refolding step in the purification protocol. Here we compared expression of five prokaryotic (bacterial and archaeal) IMP families in E. JR-AB2-011 datasheet coli and Saccharomyces cerevisiae. We demonstrate that our S. cerevisiae-based production platform is superior in expression of four investigated IMPs, overall being able to deliver high quantities of active target proteins. Surprisingly, in case of the family of zinc transporters (Zrt/Irt-like proteins, ZIPs), S. cerevisiae rescued protein expression that was undetectable in E. coli. We also demonstrate the effect of localization of the fusion tag on expression yield and sample quality in detergent micelles.

Autoři článku: Ellingtonpape6446 (Rosario Moore)