Lambdale8226

Z Iurium Wiki

Verze z 8. 11. 2024, 16:47, kterou vytvořil Lambdale8226 (diskuse | příspěvky) (Založena nová stránka s textem „Osteoclasts can interact with osteosarcoma to promote the growth of osteosarcoma. Cisplatin is common in adjuvant chemotherapy of osteosarcoma. However, du…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Osteoclasts can interact with osteosarcoma to promote the growth of osteosarcoma. Cisplatin is common in adjuvant chemotherapy of osteosarcoma. However, due to chemoresistance, the efficacy is profoundly limited. Previous studies have found that zoledronic acid (ZA) has osteoclast activation inhibition and antitumor effect. However, the combined effect of ZA and cisplatin on osteosarcoma remains unclear. In vitro, the effects of ZA and cisplatin alone or in combination on 143B cell activity, proliferation, apoptosis, and ROS-PI3K/AKT signaling were detected. At the same time, the effect of ZA and cisplatin on osteoclast formation, survival, and activity was detected by TRAP staining and bone plate absorption test. These were further verified in mice. The results showed that in vitro, compared with the single treatment and control, the combination of ZA and cisplatin could significantly inhibit the activity and proliferation of 143B cells and induced their apoptosis and further promoted the generation of ROS and inhibited the phosphorylation of PI3K and AKT. ROS scavenger and the agonist of the PI3K/AKT pathway could reverse these results. In addition, cisplatin in synergy with ZA could significantly inhibit osteoclast formation and survival to reduce bone plate absorption. In vivo, compared with the single group, the tumor volume and cell proliferation were significantly reduced, apoptosis and necrosis of tumor cells increased, and TRAP+ osteoclasts and osteolysis destruction decreased in the combined group. Taletrectinib In conclusion, ZA enhanced the antitumor effect of cisplatin on osteosarcoma by ROS-PI3K/AKT signaling, reducing the chemoresistance and osteoclast activation to enhance chemotherapy and inhibit osteolysis. And this present study raised the possibility that combining ZA and cisplatin may represent a novel strategy against osteosarcoma.

The blood-brain barrier (BBB) regulates the exchange of molecules between the brain and peripheral blood and is composed primarily of microvascular endothelial cells (BMVECs), which form the lining of cerebral blood vessels and are linked via tight junctions (TJs). The BBB is regulated by components of the extracellular matrix (ECM), and matrix metalloproteinase 3 (MMP3) remodels the ECM's basal lamina, which forms part of the BBB. Oxidative stress is implicated in activation of MMPs and impaired BBB. Thus, we investigated whether MMP3 modulates BBB permeability.

Experiments included

assessments of isoflurane anesthesia and dye extravasation from brain in wild-type (WT) and MMP3-deficient (MMP3-KO) mice, as well as

assessments of the integrity of monolayers of WT and MMP3-KO BMVECs and the expression of junction proteins.

Compared to WT mice, measurements of isoflurane usage and anesthesia induction time were higher in MMP3-KO mice and lower in WT that had been treated with MMP3 (WT+MMP3), while aently reduces TJ and VE-cadherin proteins in BMVECs.Vascular smooth muscle cell (VSMC) apoptosis is a major defining feature of abdominal aortic aneurysm (AAA) and mainly caused by inflammatory cell infiltration. Smooth muscle (SM) 22α prevents AAA formation through suppressing NF-κB activation. However, the role of SM22α in VSMC apoptosis is controversial. Here, we identified that SM22α loss contributed to apoptosis of VSMCs via activation of macrophages. Firstly, deficiency of SM22α enhanced the interaction of VSMCs with macrophages. Macrophages were retained and activated by Sm22α -/- VSMCs via upregulating VCAM-1 expression. The ratio of apoptosis was increased by 1.62-fold in VSMCs treated with the conditional media (CM) from activated RAW264.7 cells, compared to that of the control CM (P less then 0.01), and apoptosis of Sm22α -/- VSMCs was higher than that of WT VSMCs (P less then 0.001). Next, circRasGEF1B from activated macrophages was delivered into VSMCs promoting ZFP36 expression via stabilization of ZFP36 mRNA. Importantly, circRasGEF1B, as a scaffold, guided ZFP36 to preferentially bind to and decay Bcl-2 mRNA in a sequence-specific manner and triggered apoptosis of VSMCs, especially in Sm22α -/- VSMCs. These findings reveal a novel mechanism by which the circRasGEF1B-ZFP36 axis mediates macrophage-induced VSMC apoptosis via decay of Bcl-2 mRNA, whereas Sm22α -/- VSMCs have a higher sensitivity to apoptosis.The molecular mechanisms underlying the cardiotoxicity associated with bevacizumab, a first-line immunotherapeutic agent used to treat lung cancer, are not fully understood. Here, we examined intracellular signal transduction in cardiomyocytes after exposure to different doses of bevacizumab in vitro. Our results demonstrated that bevacizumab significantly and dose-dependently reduces cardiomyocyte viability and increases cell apoptosis. Bevacizumab treatment also led to mitochondrial dysfunction in cardiomyocytes, as evidenced by the decreased ATP production, increased ROS production, attenuated antioxidative enzyme levels, and reduced respiratory complex function. In addition, bevacizumab induced intracellular calcium overload, ER stress, and caspase-12 activation. Finally, bevacizumab treatment inhibited the ERK signaling pathway, which, in turn, significantly reduced cardiomyocyte viability and contributed to mitochondrial dysfunction. Together, our results demonstrate that bevacizumab-mediated cardiotoxicity is associated with mitochondrial dysfunction, ER stress, and ERK pathway inactivation. These findings may provide potential treatment targets to attenuate myocardial injury during lung cancer immunotherapy.Cardiomyocyte apoptosis is an important pathological mechanism underlying cardiovascular diseases and is commonly caused by hypoxia. Moreover, hypoxic injury occurs not only in common cardiovascular diseases but also following various treatments of heart-related conditions. One of the major mechanisms underlying hypoxic injury is oxidative stress. Quercetin has been shown to exert antioxidant stress and vascular protective effects, making it a promising candidate for treating cardiovascular diseases. Therefore, we examined the protective effect of quercetin on human cardiomyocytes subjected to hypoxia-induced oxidative stress damage and its underlying mechanism. Human cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) in vitro with or without quercetin pretreatment; thereafter, flow cytometry, Cell Counting Kit-8 assay, laser scanning confocal microscopy, quantitative PCR, western blotting, and enzyme-linked immunosorbent assay were performed to analyze the effects of quercetin on cardiomyocytes. We found that H/R induced reactive oxygen species overproduction and endoplasmic reticulum stress, as well as inhibited the function of the mitochondria/endoplasmic reticulum and mitophagy, eventually leading to apoptosis and decreasing the viability of human cardiomyocytes.

Autoři článku: Lambdale8226 (Bragg Mark)