Wynnwhittaker1946

Z Iurium Wiki

Verze z 8. 11. 2024, 16:21, kterou vytvořil Wynnwhittaker1946 (diskuse | příspěvky) (Založena nová stránka s textem „Experimental validation of this network established that many of these TFs mediate GA-regulated germination, including TCP14/15, RAP2.2/2.3/2.12, and ZML1.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Experimental validation of this network established that many of these TFs mediate GA-regulated germination, including TCP14/15, RAP2.2/2.3/2.12, and ZML1. The reduced germination phenotype of the tcp14 tcp15 mutant seed was partially rescued through ectopic expression of their direct target EXPA9. The GA-mediated control of germination by TCP14/15 is regulated through EXPA-mediated control of cell wall loosening, providing a mechanistic explanation for this phenotype and a previously undescribed role for TCPs in the control of cell expansion. This network reveals the paths of signal integration that culminate in seed germination and provides a resource to uncover links between the genetic and biomechanical bases of plant growth.The visual responses of neurons in the primary visual cortex (V1) are influenced by the animal's position in the environment [1-5]. V1 responses encode positions that co-fluctuate with those encoded by place cells in hippocampal area CA1 [2, 5]. This correlation might reflect a common influence of non-visual spatial signals on both areas. Place cells in CA1, indeed, do not rely only on vision; their place preference depends on the physical distance traveled [6-11] and on the phase of the 6-9 Hz theta oscillation [12, 13]. Are V1 responses similarly influenced by these non-visual factors? We recorded V1 and CA1 neurons simultaneously while mice performed a spatial task in a virtual corridor by running on a wheel and licking at a reward location. By changing the gain that couples the wheel movement to the virtual environment, we found that ∼20% of V1 neurons were influenced by the physical distance traveled, as were ∼40% of CA1 place cells. Moreover, the firing rate of ∼24% of V1 neurons was modulated by the phase of theta oscillations recorded in CA1 and the response profiles of ∼7% of V1 neurons shifted spatially across the theta cycle, analogous to the phase precession observed in ∼37% of CA1 place cells. The influence of theta oscillations on V1 responses was more prominent in putative layer 6. These results reveal that, in a familiar environment, sensory processing in V1 is modulated by the key non-visual signals that influence spatial coding in the hippocampus.Over five million hectares of tropical forest were cleared across mainland Southeast Asia and sub-Saharan Africa for rubber plantations between 2003 and 2017 [1, 2]. Millions of hectares of further clearance are predicted as rubber demand rises, which will have major consequences for biodiversity [3]. A key question is how to reconcile rubber expansion with biodiversity conservation. We assessed the feasibility of simultaneously meeting global future demand for rubber with conservation of extinction-threatened amphibians, birds, mammals, and reptiles. We compared the spatial congruence of rubber bioclimatic suitability with extinction vulnerability [4] in Africa, Asia, and New Guinea, where large-scale rubber cultivation is viable, and simulated rubber expansion under different scenarios. We found no "win-win" areas with highest rubber suitability and lowest extinction vulnerability. Projected rubber demand could be met by allowing expansion primarily in New Guinea and African Guinea. However, New Guinea has high ecosystem intactness and both regions are rich in endemics. Scenarios suggest converting only areas suitable for cultivation would cause the largest biodiversity losses, including endangered species, whereas prioritizing conservation would result in only the conversion of highly unsuitable land. Compromise scenarios that balance production with conservation could cut biodiversity losses by two-thirds, protecting most endangered species while maintaining high rubber suitability. check details Development of high-yielding hardy clones expands the amount of win-win areas, as well as suitable areas with high extinction risk. These trade-offs reveal that clonal research and development, strategic corporate and government land-use policies, and rigorous impact assessments are needed to prevent severe biodiversity losses from rubber development.Extinct haidomyrmecine "hell ants" are among the earliest ants known [1, 2]. These eusocial Cretaceous taxa diverged from extant lineages prior to the most recent common ancestor of all living ants [3] and possessed bizarre scythe-like mouthparts along with a striking array of horn-like cephalic projections [4-6]. Despite the morphological breadth of the fifteen thousand known extant ant species, phenotypic syndromes found in the Cretaceous are without parallel and the evolutionary drivers of extinct diversity are unknown. Here, we provide a mechanistic explanation for aberrant hell ant morphology through phylogenetic reconstruction and comparative methods, as well as a newly reported specimen. We report a remarkable instance of fossilized predation that provides direct evidence for the function of dorsoventrally expanded mandibles and elaborate horns. Our findings confirm the hypothesis that hell ants captured other arthropods between mandible and horn in a manner that could only be achieved by articulating their mouthparts in an axial plane perpendicular to that of modern ants. We demonstrate that the head capsule and mandibles of haidomyrmecines are uniquely integrated as a consequence of this predatory mode and covary across species while finding no evidence of such modular integration in extant ant groups. We suggest that hell ant cephalic integration-analogous to the vertebrate skull-triggered a pathway for an ancient adaptive radiation and expansion into morphospace unoccupied by any living taxon.Uncertainties in the phylogeny of birds (Avialae) and their closest relatives have impeded deeper understanding of early theropod flight. To help address this, we produced an updated evolutionary hypothesis through an automated analysis of the Theropod Working Group (TWiG) coelurosaurian phylogenetic data matrix. Our larger, more resolved, and better-evaluated TWiG-based hypothesis supports the grouping of dromaeosaurids + troodontids (Deinonychosauria) as the sister taxon to birds (Paraves) and the recovery of Anchiornithinae as the earliest diverging birds. Although the phylogeny will continue developing, our current results provide a pertinent opportunity to evaluate what we know about early theropod flight. With our results and available data for vaned feathered pennaraptorans, we estimate the potential for powered flight among early birds and their closest relatives. We did this by using an ancestral state reconstruction analysis calculating maximum and minimum estimates of two proxies of powered flight potential-wing loading and specific lift.

Autoři článku: Wynnwhittaker1946 (Yildirim Olsson)