Lotttranberg0282
Surface functional groups play a dominating role in determining the adsorption performance of metal oxide particles. The ability to manipulate the surface functional groups is vital in designing an effective adsorbent for water decontamination. In this study, a facile method is proposed for tuning the amount of the surface hydroxyl groups of CeO2 particles. The volume of water added during the ethylene glycol-mediated solvothermal synthesis of CeO2 particles can be used to adjust the amount of surface hydroxyl groups. By simple reduction in the volume of water, the number of surface hydroxyl groups of CeO2 particles can be increased and the phosphate adsorption capacity can be greatly improved. Our results show that the obtained CeO2 particles have high phosphate adsorption capacity at low phosphate concentrations, fast adsorption kinetics, and the ability to achieve an ultralow phosphate concentration in the real sewage effluent. This study provides an effective strategy for designing highly effective metal oxide adsorbents through surface functional group engineering.Nanocolloids (Ncs) are ubiquitous in natural surface waters. However, the effects of Ncs on the fate and ecotoxicity of graphene oxide (GO, a popular engineered nanomaterial (ENM)) remain largely unknown. Ncs exhibited a strong adsorption affinity (KL=1.93 L/mg) and high adsorption capacity (176.2 mg/g) for GO. After Nc hybridization, GO nanosheets became scrolls, and the aggregation rate of GO decreased. The influence of humic acid and Ncs on GO toxicity was compared. Humic acid mitigated the phytotoxicity of GO. However, GO and GO-Ncs were found to have an envelopment effects on algal cells, and both could enter algal cells. GO-Ncs induced higher reactive oxygen species (ROS) generation, stronger DNA damage and plasmolysis and more obvious inhibition of photosynthesis than GO. Proteomics analysis revealed that photosystem I- and II-related proteins (e.g., E1ZQR2 and E1ZPG5) were regulated more significantly in the GO-Ncs groups than in the GO groups. A combined proteomics and metabolomics analysis showed that the inhibition of carbohydrate, fatty acid and amino acid metabolism contributed to ROS generation. Given the high concentrations and activity of Ncs, the above results highlight the need for reconsideration of the Ncs-mediated environmental behaviors and risks of ENMs and other pollutants.The vitamin K epoxide reductase (VKORC1) enzyme is of primary importance in many physiological processes, i.e., blood coagulation, energy metabolism, and arterial calcification prevention, due to its role in the vitamin K cycle. Indeed, VKORC1 catalyzes reduction of vitamin K epoxide to quinone and then to hydroquinone. However, the three-dimensional VKORC1 structure remains experimentally undetermined, because of the endoplasmic reticulum membrane location of this enzyme. Here we present a molecular modeling investigation of the VKORC1 enzymatic site structure and function, supported by in vitro enzymatic assays. Four VKORC1 mutants were designed in silico (F55G, F55Y, N80G, and F83G) based on a previous study that identified residues F55, N80, and F83 as being crucial for vitamin K epoxide binding. PMX53 F55G, N80G, and F83G nonconservative mutants were all predicted to be inactive by molecular modeling analyses. However, the F55Y conservative mutant was expected to be active compared to wild-type VKORC1. In vitro enzymatic assays performed on recombinant proteins assessed our molecular modeling hypotheses and led us to describe the role of accurate VKORC1 active site residues with respect to VKORC1. Residues F55, N80, and F83 appeared to act in a concerted manner to keep vitamin K epoxide close to the C135 catalytic residue. Residues F55 and N80 prevent naphthoquinone head rotation away from the active site, assisted by residue F83 that prevents vitamin K from sliding outside the enzymatic pocket, through hydrophobic tail stabilization. Our results thus highlighted the specific functions of VKORC1 catalytic pocket residues and evidenced the ability of our structural model to predict biological effects of VKORC1 mutations.Most bacteria in natural and engineered environments grow and exist in biofilms. Recent investigations have shown that nanoparticles (NPs) interact with environmental biofilms, but these interactions are still not well characterized. Extracellular polymeric substances (EPS) are polymers secreted by bacteria to establish the functional and structural integrity of biofilms, and EPS porosity is a major contributor to NP access to and diffusion in biofilms. We used a synergistic combination of total internal reflection fluorescence microscopy and image correlation spectroscopy to monitor and map diffusion of fluorescent NPs in alginate yielding a detailed picture of the heterogeneous structure and connectivity of pores within a model EPS polymer. Using different sizes (20, 100, and 200 nm) of carboxylated polystyrene NPs, we examined how NP diffusive behaviors change as a result of calcium-induced cross-linking of the alginate matrix. This study reveals that cross-linking decreases NP diffusion coefficients and pore accessibility in an NP size-dependent manner and that NP movement through alginate matrices is anisotropic and heterogeneous. These results on heterogeneous and size-dependent movement within biofilms have important implications for future studies and simulations of NP-biofilm interactions.The notorious shuttling behaviors and sluggish conversion kinetics of the intermediate lithium polysulfides (LPS) are hindering the practical application of lithium sulfur (Li-S) batteries. Herein, an ultrafine, amorphous, and oxygen-deficient niobium pentoxide nanocluster embedded in microporous carbon nanospheres (A-Nb2O5-x@MCS) was developed as a multifunctional sulfur immobilizer and promoter toward superior shuttle inhibition and conversion catalyzation of LPS. The A-Nb2O5-x nanocluster implanted framework uniformizes sulfur distribution, exposes vast active interfaces, and offers a reduced ion/electron transportation pathway for expedited redox reaction. Moreover, the low crystallinity feature of A-Nb2O5-x manipulates the LPS chemical affinity, while the defect chemistry enhances the intrinsic conductivity and catalytic activity for rapid electrochemical conversions. Attributed to these superiorities, A-Nb2O5-x@MCS delivers good Li-S battery performances, that is, high areal capacity of 6.62 mAh cm-2 under high sulfur loading and low electrolyte/sulfur ratio, superb rate capability, and cyclability over 1200 cycles with an ultralow capacity fading rate of 0.