Weinerbray0244
a random sampling method, demonstrated that older adults used technology to mitigate social isolation during the pandemic. Web-based socialization is the most promising method for mitigating potential mental health effects that are related to virus containment strategies. Providing telephone training; creating task lists; and implementing the facilitators described by participants, such as facilitated socialization activities, are important strategies for addressing barriers, and these strategies can be implemented during and beyond the pandemic to bolster the mental health needs of older adults.This article is concerned with a distributed filtering problem for Markov jump systems subject to the measurement loss with unknown probabilities. A centralized robust Kalman filter is designed by using variational Bayesian methods and a modified interacting multiple model method based on information theory (IT-IMM). Then, a distributed robust Kalman filter based on the centralized filter and a hybrid consensus method called hybrid consensus on measurement and information (HCMCI) is designed. Moreover, boundedness of the estimation errors and the estimation error covariances are studied for the distributed robust Kalman filter.The principal component analysis network (PCANet) is an unsupervised deep network, utilizing principal components as convolution filters in its layers. Albeit powerful, the PCANet suffers from two fundamental problems responsible for its performance degradation. First, the principal components transform the data as column vectors (which we call the amalgamated view) and incur a loss of spatial information present in the data. Second, the generalized pooling in the PCANet is unable to incorporate spatial statistics of the natural images, and it also induces redundancy among the features. In this research, we first propose a tensor-factorization-based deep network called the tensor factorization network (TFNet). The TFNet extracts features by preserving the spatial view of the data (which we call the minutiae view). We then proposed HybridNet, which simultaneously extracts information with the two views of the data since their integration can improve the performance of classification systems. Finally, to alleviate the feature redundancy among hybrid features, we propose Attn-HybridNet to perform attention-based feature selection and fusion to improve their discriminability. Classification results on multiple real-world datasets using features extracted by our proposed Attn-HybridNet achieves significantly better performance over other popular baseline methods, demonstrating the effectiveness of the proposed techniques.Chest computed tomography (CT) image data is necessary for early diagnosis, treatment, and prognosis of Coronavirus Disease 2019 (COVID-19). Artificial intelligence has been tried to help clinicians in improving the diagnostic accuracy and working efficiency of CT. JNJ-678 Whereas, existing supervised approaches on CT image of COVID-19 pneumonia require voxel-based annotations for training, which take a lot of time and effort. This paper proposed a weakly-supervised method for COVID-19 lesion localization based on generative adversarial network (GAN) with image-level labels only. We first introduced a GAN-based framework to generate normal-looking CT slices from CT slices with COVID-19 lesions. We then developed a novel feature match strategy to improve the reality of generated images by guiding the generator to capture the complex texture of chest CT images. Finally, the localization map of lesions can be easily obtained by subtracting the output image from its corresponding input image. By adding a classifier brancore which suggests our method can help rapid diagnosis of COVID-19 patients, especially in massive common severity cohort. In conclusion, we proposed this novel method can serve as an accurate and efficient tool to alleviate the bottleneck of expert annotation cost and advance the progress of computer-aided COVID-19 diagnosis.Continuous monitoring of anaesthetics infusion is demanded by anaesthesiologists to help in defining personalized dose, hence reducing risks and side effects. We propose the first piece of technology tailored explicitly to close the loop between anaesthesiologist and patient with continuous drug monitoring. Direct detection of drugs is achieved with electrochemical techniques, and several options are present in literature to measure propofol (widely used anaesthetics). Still, the sensors proposed do not enable in-situ detection, they do not provide this information continuously, and they are based on bulky and costly lab equipment. In this paper, we present a novel smart pen-shaped electronic system for continuous monitoring of propofol in human serum. The system consists of a needle-shaped sensor, a quasi digital front-end, a smart machine learning data processing, in a single wireless battery-operated embedded device featuring Bluetooth Low Energy (BLE) communication. The system has been tested and characterized in real, undiluted human serum, at 37 °C. The device features a limit of detection of 3.8 μM, meeting the requirement of the target application, with an electronics system 59% smaller and 81% less power consuming w.r.t. the state-of-the-art, using a smart machine learning classification for data processing, which guarantees up to twenty continuous measure.Knowledge distillation, aimed at transferring the knowledge from a heavy teacher network to a lightweight student network, has emerged as a promising technique for compressing neural networks. However, due to the capacity gap between the heavy teacher and the lightweight student, there still exists a significant performance gap between them. In this article, we see knowledge distillation in a fresh light, using the knowledge gap, or the residual, between a teacher and a student as guidance to train a much more lightweight student, called a res-student. We combine the student and the res-student into a new student, where the res-student rectifies the errors of the former student. Such a residual-guided process can be repeated until the user strikes the balance between accuracy and cost. At inference time, we propose a sample-adaptive strategy to decide which res-students are not necessary for each sample, which can save computational cost. Experimental results show that we achieve competitive performance with 18.